AboutCode

Sep 25, 2019

Contents

Aboutcode Projects
Documentation Guide
Tutorial Documents
How-To Documents
Reference Documents
Discussion Documents

Indices and Tables

157

161

163

165

167

169

CHAPTER 1

Aboutcode Projects

1.1 Scancode-Toolkit Documentation

1.1.1 Getting Started

Home

ScanCode is a tool to scan code and detect licenses, copyrights and more.

Why ScanCode?

Discovering the origin and license for a software component is important, but it is often much harder to accomplish
than it should be because:

* A typical software project may reuse tens or hundreds of third-party software components
» Software authors do not always provide copyright and license information
» Copyright and license information that is provided may be hard to find and interpret
ScanCode tries to address this issue by offering:
* A comprehensive code scanner that can detect origin or license information inside codebase files
* A simple command line approach that runs on Windows, Linux, and Mac
* Your choice of JSON or other output formats (HTML, CSV) for integration with other tools
* Well-tested, easy to hack, and well-documented code

* Release of the code and reference data under attribution licenses (Apache 2.0 and CC-BY-1.0)

AboutCode

What does ScanCode Toolkit do?

ScanCode finds the provenance information that is in your codebase with a focus on:
» Copyright and other origin clues (emails, urls, authors,etc)
* License notices and license text with reference information about detected licenses.
Using this data you can:
* Discover the origin and license of the open source and third-party software components that you use,
* Create a software component Inventory for your codebase, and

* Use this data to comply with open source license obligations such as attribution and redistribution.

How does it work?

Given a codebase in a directory, ScanCode will:
* Collect an inventory of the code files and classify the code using file types
* Extract files from any archive using a general purpose extractor
» Extract texts from binary files if needed
» Use an extensible rules engine to detect open source license text and notices
» Use a specialized parser to capture copyright statements
* Identify packaged code and collect metadata from packages
» Report the results in the formats of you choice (JSON, CSV, etc.) for integration with other tools

e Browse the results using the AboutCode Manager companion app from https:/github.com/nexB/
aboutcode-manager to assist your analysis.

ScanCode should enable you to identify the “easy” cases on your own, but a software development team will probably
need to build internal expertise or use outside experts (like nexB) in many cases.

ScanCode is written in Python and also uses other open source packages.

Alternatives?

There are several utilities that do some of what ScanCode does - e.g. you can grep files for copyright and license text.
This may work well for simple cases - e.g. at the single file level, but we created ScanCode for ourselves because this
approach does not help you to see the recurring patterns of licenses and other provenance clues.

Or you can consider other tools such as:
* FOSSology (open source, written in C, Linux only, GPL-licensed)
* Ninka (open source, written in Perl, GPL-licensed)

¢ Commercially-licensed tools, most written in Java

2 Chapter 1. Aboutcode Projects

https://github.com/nexB/aboutcode-manager
https://github.com/nexB/aboutcode-manager

AboutCode

History

ScanCode was originally created by nexB to support our software audit consulting services. We have used and contin-
uously enhanced the underlying toolkit for six years. We decided to release ScanCode as open source software to give
software development teams the opportunity to perform as much of the software audit function as they like on their
own.

If you have questions or are interested in nexB-provided training or support for ScanCode, please send us a note at
info@scancode.io or visit http://www.nexb.com/.

We are part of nexB Inc. and most of us are located in the San Francisco Bay Area. Our mission is to provide the
tools and services that enable and accelerate component-based software development. Reusing software components
is essential for the efficient delivery of software products and systems in every industry.

Thank you for giving ScanCode a try!

Comprehensive Installation

ScanCode requires Python 2.7.x and is tested on Linux, Mac, and Windows. Make sure Python 2.7 is installed first.

System Requirements

* Hardware : ScanCode will run best with a modern X86 processor and at least 2GB of RAM and 250MB of disk.
* Supported operating systems : ScanCode should run on these OSes:

1. Linux: on most recent 64-bit Linux distributions (32-bit distros are only partially supported),

2. Mac: on recent Mac OSX (10.6.8 and up),

3. Windows: on Windows 7 and up (32- or 64-bit) using a 32-bit Python.

Prerequisites

ScanCode needs a Python 2.7 interpreter.

* On Linux: Use your package manager to install python2.7. If Python 2.7 is not available from your package
manager, you must compile it from sources. For instance, visit https://github.com/dejacode/about-code-tool/
wiki/BuildingPython270nCentos6 for instructions to compile Python from sources on Centos.

* On Ubuntu 12.04, 14.04 and 16.04, you will need to install these packages first: python-dev bzip2
xz-utils zliblg libxml2-dev libxsltl-dev

* On Debian and Debian-based distros you will need to install these packages first: python-dev libbz2-1.
0 xz-utils zliblg libxml2-dev libxsltl-dev

* On RPM-based distros, you will need to install these packages first: python-devel zlib bzip2-libs
xz—-1libs libxml2-devel libxslt-devel

¢ On Windows:

Use the Python 2.7 32-bit (e.g. the Windows x86 MSI installer) for X86 regardless of whether you run
Windows on 32-bit or 64-bit. DO NOT USE Python X86_64 installer even if you run 64 bit Windows.
Download Python from this url: https://www.python.org/ftp/python/2.7.13/python-2.7.13.msi

Install Python on the c: drive and use all default installer options(scancode will try to find python just
in c:python27python.exe). See the Windows installation section for more installation details.

1.1. Scancode-Toolkit Documentation 3

mailto:info@scancode.io
http://www.nexb.com/
https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6
https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6
https://www.python.org/ftp/python/2.7.13/python-2.7.13.msi

AboutCode

* On Mac: Download and install Python from this url: https://www.python.org/ftp/python/2.7.13/python-2.7.
13-macosx10.6.pkg

Do not use Unicode, non-ASCIl in your installation Path

There is a bug in underlying libraries that prevent this.

Installation on Linux and Mac

Download and extract the latest ScanCode release from: https://github.com/nexB/scancode-toolkit/releases/latest

Open a terminal in the extracted directory and run:

./scancode —-help

This will configure ScanCode and display the command line help.

Installation on Windows

* Download the latest ScanCode release zip file from https://github.com/nexB/scancode-toolkit/releases/latest

¢ In Windows Explorer (called File Explorer on Windows 10), select the downloaded ScanCode zip and right-
click.

* In the pop-up menu select ‘Extract All...’

* In the pop-up window ‘Extract zip folders’ (‘Extract Compressed (Zipped) Folders’ on Windows 10) use the
default options to extract.

* Once the extraction is complete, a new Windows Explorer/File Explorer window will pop up.

¢ In this Explorer window, select the new folder that was created and right-click.

Note: On Windows 10, double-click the new folder, select one of the files inside the folder (e.g., ‘setup.py’), and
right-click.

* In the pop-up menu select ‘Properties’.

* In the pop-up window ‘Properties’, select the Location value. Copy this to the clipboard and close the ‘Proper-
ties’ window.

¢ Press the start menu button (On Windows 10, click the search box or search icon in the taskbar.)

¢ In the search box type:

cmd

 Select ‘cmd.exe’ listed in the search results. (On Windows 10, you may see ‘Command Prompt’ instead — select
that.)

* A new ‘cmd.exe’ window (‘Command Prompt” on Windows 10) pops up.

* In this window (aka a ‘command prompt’), type the following (i.e., ‘cd’ followed by a space):

cd

4 Chapter 1. Aboutcode Projects

https://www.python.org/ftp/python/2.7.13/python-2.7.13-macosx10.6.pkg
https://www.python.org/ftp/python/2.7.13/python-2.7.13-macosx10.6.pkg
https://github.com/nexB/scancode-toolkit/releases/latest
https://github.com/nexB/scancode-toolkit/releases/latest

AboutCode

* Right-click in this window and select Paste. This will paste the path where you extracted ScanCode.

¢ Press Enter.

This will change the current location of your command prompt to the root directory where scancode is installed.

* Then type:

scancode -h

¢ Press enter. This will configure your ScanCode installation.
» Several messages are displayed followed by the scancode command help.

* The installation is complete.

Un-installation

* Delete the directory in which you extracted ScanCode.

* Delete any temporary files created in your system temp directory under a scancode directory.

IDE Configuration

The instructions below assume that you followed the How fo get started with development? including a python
virtualenv.

PyCharm

Open the settings dialog and navigate to “Project Interpreter”. Click on the gear button in the upper left corner and
select “Add Local”. Find the python binary in the virtualenv (bin/python in the repository root) and confirm. Open
a file that contains tests and set a breakpoint. Right click in the test and select “Debug <name of test>”. Afterwards
you can re-run the same test in the debugger using the appropriate keyboard shortcut (e.g. Shift-F9, depending on
platform and configured layout).

Visual Studio Code

Install the Python extension from Microsoft.

The configure script should have created a VSCode workspace directory with a basic settings. json. To do
this manually, add to or create the workspace settings file . vscode/settings. json:

"python.pythonPath": "$ /bin/python",
"python.unitTest.pyTestEnabled": true

If you created the file, also add { and } on the first and last line respectively.

When you open the project root folder in VSCode, the status bar should show the correct python interpreter and, after
a while, a “Run Tests” button. If not, try restarting VSCode.

Open a file that contains tests (e.g. tests/cluecode/test_copyrights.py). Above the test functions you
should now see “Run Test” and “Debug Test”. Set a breakpoint in a test function and click on “Debug Test” above it.
The debugger panel should show up on the left and show the program state at the breakpoint. Stepping over and into
code seems not to work. Clicking one of those buttons just runs the test to completion. As a workaround, navigate to
the function you want to step into, set another breakpoint and click on “continue” instead.

1.1. Scancode-Toolkit Documentation 5

https://marketplace.visualstudio.com/items?itemName=ms-python.python

AboutCode

Documentation
This page provides an index of current ScanCode user documentation.
Download

Download the latest release of ScanCode from our release page .

Installation

See https://github.com/nexB/scancode-toolkit/blob/master/README.rst for more.

User Guide

The goal of ScanCode is to help you detect accurately provenance information in a codebase. The output of the scan
is either a JSON file, an HTML app or a plain HTML file. You can visualize the HTML format in a tree view format.
This view contains the following elements:

* Code tree view - On the left side, you are able to navigate the code tree to understand what ScanCode has
detected in each file.

Path - The directory path of the analyzed file.

* Start/End Line - The line number where the Copyright or License has been detected.
* What - The type of detection, either Copyright or a License.

* Info - The name of the detected output.

You can sort any column by clicking on its title. Search is also available in the top right corner for faster access to a
specified resource or a type of detected license or copyright.

What’s New in This Release

A new release of Scancode-Toolkit is here!

Quick Summary

Version - Date - Type - Comments -

1.1.2 Command Line Interface Referance
Synopsis
ScanCode detects licenses, copyrights, package manifests and direct dependencies and more both in source code and
binary files, by scanning the files. This section shows and explains the following:
¢ Quickstart
* Type of Options

¢ Qutput Formats

6 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/releases
https://github.com/nexB/scancode-toolkit/blob/master/README.rst

AboutCode

 Other Important Documentation

This is a synopsis of the whole section that follows, the ScanCode Command Line Referance.

Quickstart

The basic usage is:

./scancode [OPTIONS] <input> <output_file>

Note: On Windows use scancode instead of . /scancode

Warning: In later versions 3.x, this format changes significantly. Output options are different, and <output_file>
precedes <input>.

The <input> file or directory is what will be scanned for origin clues. The results will be saved to the
<output_file>.

Type of Options

Scancode Toolit Command Line options can be divided into these major section:
* Basic Scan Type Options
* Extractcode Options
* Core Options
* Controlling Scancode Output and Filters
* Pre-Scan Options

* Post-Scan Options

Output Formats

The output file format is set by using the —f or ——format option. The default output format is JSON, the entire file
being in one line, without whitespace characters.

The following example scans will show you how to run a scan with each of the result formats. For the scans, we will
use the samples directory provided with the ScanCode Toolkit.

JSON file output

Scan the samples directory and save the scan to a JSON file:

./scancode —--format json samples samples. json

1.1. Scancode-Toolkit Documentation 7

AboutCode

Warning: The —format option is discontinued in later 3.x versions, where ——json is used instead of ——format
json.

samples.json

{

"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c",

[

: "zlib",
e': 100.0,
: "ZLIB License",
: "Attribution",
B bl
: "http://www.zlib.net/",
: "http://www.gzip.org/zlib/zlib_license.html",
: "https://enterprise.dejacode.com/license_library/Demo/zlib/",
1 "Zlib",
: "http://spdx.org/licenses/Zlib",
L I
ERES

[

Static html output

Scan the samples directory for licenses and copyrights and save the scan results to an HTML file. When the scan is
done, open samples.html in your web browser.

./scancode —-format html samples samples.html

8 Chapter 1. Aboutcode Projects

AboutCode

location start end what value
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 1 3 copyright | Copyright (c) 1995-2011 Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 3 3 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 4 4 copyright | Copyright (c) 1995-2013 Jean-loup Gailly and Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 6 20 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 1 3 copyright | Copyright (c) 1995-2013 Jean-loup Gailly.
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 3 3 license | zlib
samples/JGroups/EULA 3 108 | license jposs-eula
samples/JGroups/EULA 104 | 104 | copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 426 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroups/licenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-2.0.txt 2 202 | license apache-2.0
samples/JGroups/licenses/bouncycastle.txt 5 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license | mit
samples/JGroups/licenses/cpl-1.0.txt 1 1 license | cpl-1.0
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroups/licenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 426 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/src/FixedMembershipToken.java | 2 5 copyright | Copyright 2005, JBoss Inc.

1.1. Scancode-Toolkit Documentation

AboutCode

Package Information

type packaging primary_language

samples/arch/zlib.tar.gz | plain tarball | archive None
Licenses
key short_name category owner dejacode_url homepage_url
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
11 Apache 1.1 | Attribution | Software 14/ * . . http://www.apache.org/licenses/
: Foundation | =
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
20 Apache 2.0 | Attribution | Software 2.0/ * . . http://www.apache.org/licenses/
. Foundation | ==
- _— ps: prise.dej . i ibrary. - . .
:’063 &l Boost 1.0 Attribution | Boost :mo /S I/enterprise.dejacode.com/license library/Demo/boost http://www.boost.org/users/license.html
-by- _— i ps: prise.dej . i ibrary. -by- . . .
cc-by CC-BY-25 | Atribution | Credtive e hitp://creativecommons.org/licenses/by/2.5/
2.5 Commens | 2.5/
CMR -
CMR Christian
cmr-no | Attribution | Michelsen | https://enterprise.dejacode.com/license _library/Demo/cmr-no/
icense
Research
AS
Copyleft . " . . : . :
cpl-1.0 [CPL1.0 Limited IBM https://enterprise.dejacode.com/license_library/Demo/cpl-1.0/ | http:/www.eclipse.org/legal/cpl-v10.html
1-2.0- GPL2.0or
gﬁjs_' later with Copyleft Dmitriy https://enterprise.dejacode.com/license_library/Demo/gpl-2.0-
z i Ada Limited Anisimkov | plus-ada/
exception
jboss- JBoss Proprietary | JBoss https://enterprise.dejacode.com/license_library/Demo/jboss-
eula EULA Free Community | eula/
Free
Igpl-2.1- | LGPL 2.1 Copyleft Software https:/enterprise.dejacode.com/license library/Demo/igpl-2.1- | hitp:/www.gnu.org/licenses/old-
plus or later Limited Foundation | plus/ licenses/Igpl-2.1-standalone.html
(FSF)

Other Important Documentation

—

How to Run a Scan

Basic Tutorials

“How To” Guides

How it all Works

Contributing to Code Development
Contributing to the Documentation
Plugin Architecture

FAQ

o ® N kLN

Support

Getting Help from the Command Line

Scancode-Toolkit Command Line Interface can help you to search for specific options or use cases from the command
line itself. These are two options are ——help and ——examples, and are very helpful if you need a quick glance of
the options or use cases. Or it can be useful when you can’t access the more elaborate online documentation.

10 Chapter 1. Aboutcode Projects

AboutCode

Help text

The Scancode-Toolkit Command Line Interface has a Help option displaying all the options. It also displays basic
usage, and some simple examples. The command line option for this is:

¢ ——help

Tip: You can also use the shorter —h option, which does the same.

For Linux based systems the full command is:

’$./scancode —-help

And for windows, it will be like:

’$ scancode —--help

Note: Make sure you are in the Scancode Root Directory before carrying out this command. After extracting the
.zipor .tar.bz file, the folder for Scancode-Toolkit version 2.1.1 will be named like “scancode-toolkit-2.2.1”.

The Following Help Text is displayed, i.e. this is the help text for Scancode Version 2.2.1

Options:
scans:

-c, ——-copyright
-1, —--license
-p, ——package
-e, ——email
-u, —-url
-i, —--info

——license-score INTEGER

—-—license-text

——license-url-template TEXT

output:

Usage: scancode [OPTIONS] <input> <output_file>

scan the <input> file or directory for origin clues and license and
save results to the <output_file>.

The scan results are printed to stdout if <output_file> is not
provided. Error and progress is printed to stderr.

Scan <input> for copyrights. [default]
Scan <input> for licenses. [default]

Scan <input> for packages. [default]

Scan <input> for emails.

Scan <input> for urls.

Include information such as size, type,
etc.

Do not return license matches with scores
lower than this score. A number between 0

and 100. [default: 0]

Include the detected licenses matched
text. Has no effect unless --license is
requested.

Set the template URL used for the license
reference URLs. In a template URL, curly
braces ({}) are replaced by the license
key. [default: https://enterprise.dejaco
de.com/urn/urn:dje:license: {}]

—-—-strip-root Strip the root directory segment of all paths.

(continues on next page)

1.1. Scancode-Toolkit Documentation

11

AboutCode

(continued from previous page)

The default is to always include the last
directory segment of the scanned path such that
all paths have a common root directory. This
cannot be combined with "~--full-root® option.

——full-root Report full, absolute paths. The default is to
always include the last directory segment of
the scanned path such that all paths have a
common root directory. This cannot be combined
with the "—--strip-root® option.

-f, ——format <format> Set <output_file> format to one of: csv, html,
html-app, Jjson, json-pp, Jjsonlines, spdx-rdf,
spdx—-tv or use <format> as the path to a custom
template file [default: json]

—-—verbose Print verbose file-by-file progress messages.

-—quiet Do not print summary or progress messages.

pre-scan:
——ignore <pattern> Ignore files matching <pattern>.

post—scan:

—--mark-source Set the "is_source" flag to true for directories that
contain over 90% of source files as direct children.
Has no effect unless the --info scan is requested.

—-only-findings Only return files or directories with findings for
the requested scans. Files and directories without
findings are omitted (not considering basic file
information as findings) .

misc:
—-reindex-licenses Force a check and possible reindexing of the
cached license index.

core:
-h, —--help Show this message and exit.
-n, ——-processes INTEGER Scan <input> using n parallel processes.
[default: 1]
—-—examples Show command examples and exit.
——about Show information about ScanCode and licensing
and exit.
—--version Show the version and exit.
--diag Include additional diagnostic information
such as error messages or result details.
—--timeout FLOAT Stop scanning a file if scanning takes longer
than a timeout in seconds. [default: 120]
Examples (use —--examples for more):

Scan the 'samples' directory for licenses and copyrights.
Save scan results to a JSON file:

scancode —--format json samples scancode_result.json
Scan the 'samples' directory for licenses and copyrights. Save scan results to
an HTML app file for interactive web browser results navigation. Additional app

files are saved to the 'myscan_files' directory:

scancode ——-format html-app samples myscan.html

(continues on next page)

12 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

Note: when you run scancode, a progress bar is displayed with a
counter of the number of files processed. Use —--verbose to display
file-by-file progress.

Command Examples Text

The Scancode-Toolkit Command Line Interface has an examples option which displays some basic examples (more
than the basic synopsis in ——he1lp). These examples include the following aspects of code scanning:

* Scanning Single File/Directory
* Output Scan results to stdout(as JSON) or HTML/JSON file
* Scanning for only Copyrights/Licenses
* Ignoring Files
* Using GLOB Patterns to Scan Multiple Files
 Using Verbose Mode
The command line option for displaying these basic examples is:
* ——examples

For Linux based systems the full command is:

’$./scancode --examples

And for windows, it will be like:

’$ scancode ——examples

The Following Text is displayed, i.e. this is the examples for Scancode Version 2.2.1

Scancode command lines examples:

(Note for Windows: use '\' back slash instead of '/' forward slash for paths.)
Scan the 'samples' directory for licenses and copyrights. Save scan results to
an HTML app file for interactive scan results navigation. When the scan is done,
open 'scancode_result.html' in your web browser. Note that additional app files
are saved in a directory named 'scancode_result_files':

scancode —-format html-app samples/ scancode_result.html

Scan a directory for licenses and copyrights. Save scan results to an
HTML file:

scancode —--format html samples/zlib scancode_result.html
Scan a single file for copyrights. Print scan results to stdout as JSON:
scancode --copyright samples/zlib/zlib.h

Scan a single file for licenses, print verbose progress to stderr as each
file is scanned. Save scan to a JSON file:

(continues on next page)

1.1. Scancode-Toolkit Documentation 13

AboutCode

(continued from previous page)

scancode --license —-verbose samples/zlib/zlib.h licenses.json

Scan a directory explicitly for licenses and copyrights. Redirect JSON scan
results to a file:

scancode —-f json -1 -c samples/zlib/ > scan.json
Scan a directory while ignoring a single file. Print scan results to stdout as JSON:
scancode -—ignore README samples/
Scan a directory while ignoring all files with txt extension. Print scan results to
stdout as JSON (It is recommended to use quoted glob patterns to prevent pattern
expansion by the shell):

scancode —--ignore "x.txt" samples/

Special characters supported in GLOB pattern:

* matches everything
? matches any single character
[seq] matches any character in seq

[!seq] matches any character not in seq
For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches,
—the character '?'.
For glob see https://en.wikipedia.org/wiki/Glob_ (programming) .
Note: Glob patterns cannot be applied to path as strings, for e.g.
scancode —--ignore "samplesxlicenses" samples/

will not ignore "samples/JGroups/licenses".

Scan a directory while ignoring multiple files (or glob patterns). Print the scan
results to stdout as JSON:

scancode —--ignore README --ignore "x.txt" samples/

To extract archives, see the 'extractcode' command instead.

All Available Options
This section contains an exhaustive list of all Scancode options, arranged in various sections. The sections are as
follows:

* basic

* core

* output-format

* ouput-control

* pre-scan

* post-scan

The order of the sections and all their options is the same as in the :ref:’cli_help_text’, available in the command line.

14 Chapter 1. Aboutcode Projects

AboutCode

Basic Scan Type Options

Option lists are two-column lists of command-line options and descriptions, documenting a program’s options. For
example:

-c, --copyright Scan <input> for copyrights. [default]
-1, --license Scan <input> for licenses. [default]
-p, --package Scan <input> for packages. [default]
-e, --email Scan <input> for emails.
-u, --url Scan <input> for urls.
-i, --info Include information such as:

* size,

* type,

e date,

* programming language,
¢ shal and mdS hashes,
* is/isn’t binary/text/archive/media/source/script

etc.

Note: Options -c, -1, and -p are default, but only if none of the six options (i.e. -c, -1, -p, -e, -u and -i) are used
explicitly. If any of combination of these options are used, scancode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general information.

Note: These options, i.e. -c, -1, -p, -e, -u, and -i can be used together. As in, instead of . /scancode -c -i -p,
you can write . /scancode -cip and it will be the same.

--license-score INTEGER Do not return license matches with scores lower than this score.

A number between 0 and 100. [default: O] Here, a bigger number means a better
match, i.e. setting a higher license score translates to a higher threshold (with
equal or less number of matches).

--license-text Include the matched text for the detected licenses with the output report.
--license-url-template TEXT Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key. [default:
https://enterprise.dejacode.com/urn/urn:dje:license:{ }]

Note: These 3 options, ——license-score, ——license—-text, and ——license-url-template doesn’t
have any effect unless ——11icense is requested.

1.1. Scancode-Toolkit Documentation 15

https://enterprise.dejacode.com/urn/urn:dje:license

AboutCode

Extractcode Options

This is intended to be used as an input preperation step, before running the scan. Archives found inside an extracted
archive are extracted recursively by default. Extraction is done in-place in a directory named ‘-extract’ side-by-side

with an archive.

To extract the packages inside samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

4 gm samples

4 e arch

4 o 7lib.tar.gz-extract

|

--shallow
--verbose
--quiet
-h, --help
--about

--version

Core Options

a Zlib-1.2.8

I adler32.c
k zlb.h
I zutilh

zlib.tar.gz

Do not extract recursively nested archives (e.g. not archives in archives).
Print verbose file-by-file progress messages.

Do not print any summary or progress message.

Show the extractcode help message and exit.

Show information about ScanCode and licensing and exit.

Show the version and exit.

-n, --processes INTEGER Scan <input> using n parallel processes. [default: 1]

--verbose

--quiet

--diag

--timeout FLOAT

--reindex-licenses

Print verbose file-by-file progress messages.
Do not print summary or progress messages.
Include additional diagnostic information such as error messages or result details.

Stop scanning a file if scanning takes longer than a timeout in seconds. [default:
120]

Force a check and possible reindexing of the cached license index.

16

Chapter 1. Aboutcode Projects

AboutCode

Output Options

-f, --format <format> Set <output_file> format to one of:
* csv
e html,
 html-app,
* json,
* json-pp,
* jsonlines,
* spdx-rdf,
* spdx-tv
or use <format> as the path to a custom template file.

By default, if nothing is specified, Output format is json.

Warning: In later versions, i.e. 3.x, this format changes significantly. Instead of this format, i.e. . /scancode
——format html, a more concise format . /scancode —--html is used.

Output Control Options

--strip-root Strip the root directory segment of all paths.

--full-root Report full, absolute paths.

Note: The options ——strip-root and ——full-root can’t be used together, i.e. any one option may be used in
a single scan.

Note: The default is to always include the last directory segment of the scanned path such that all paths have a
common root directory.

Pre-Scan Options

--ignore <pattern> Ignore files matching <pattern>.

Post-Scan Options

--mark-source Set the “is_source” flag to true for directories that contain over 90% of source
files as direct children.

Note: The ——mark-source option has no effect unless the ——info scan is requested.

1.1. Scancode-Toolkit Documentation 17

AboutCode

--only-findings Only return files or directories with findings for the requested scans. Files and
directories without findings are omitted (not considering basic file information as
findings).

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed by default with Scan-
code.

Warning: This tutorial uses the 2.2.1 version of Scancode Toolkit. If you are using a newer version of Scancode
Toolkit, check respective versions of this documentation.

Warning: This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be added.

Setting up a Virtual Environment

Scancode Toolkit 2.2.1 and Workbench 2.4.1 is not compatible with python 3.x so we will create a virtual environment
using the Virtualenv tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan2.2. 1:

virtualenv -p /usr/bin/python2.7 venv-scan2.2.1
source venv-scan2.2.l/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 2.2.1 tarball or .zip archive from the Toolkit GitHub Release Page under assets
options. Download and extract the Archive from command line:

For .zip archive:

’unzip scancode-toolkit-2.2.1.zip

For .tar.bz2 archive:

’tar -xvf scancode-toolkit-2.2.1.tar.bz2

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted directory and run:

’./scancode -—help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed by default with
Scancode Toolkit. Here’s the directory structure and respective files:

18 Chapter 1. Aboutcode Projects

https://docs.python-guide.org/dev/virtualenvs/
https://github.com/nexB/scancode-toolkit/releases/tag/v2.2.1

AboutCode

4 g samples
4 g arch
- Zlib.tar.gz-extract
zlib.tar.gz
4 e JGroups
- g licenses
[» SIC
 EULA
I LICENSE

|

ada

dotzlib
gce_gvmat6d
infback9
lostream2
adler32.c
deflate.c
deflate.h
zlib.h

zutil.c

zutil.h
README
screenshot.png -

rrrrrerriilRRR S

We notice here that the sample files contain a package z1ib.tar.gz. So we have to extract the archive before
running the scan, to also scan the files inside this package.

1.1. Scancode-Toolkit Documentation 19

AboutCode

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

4 g samples
4 g arch
4 o 7lib.tar.gz-extract
4 rzlib-1.2.8
I adler32.c
k zlib.h
k zutilh
zlib.tar.gz

Note: ——shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan, according to your
requirements.

1. The Basic Scan options, i.e. —c, -1, -p, —e, —u, and —1i are to be decided, according to your requirements. If
you do not need one specific type of information (say, licences), consider removing it, because more things you
scan for, longer it will take for the scan to complete.

2. ——license-score INTEGER is to be set if licence matching accuracy is desired (Default is 0, and in-
creasing this means a more accurate match). Also using ——1icense-text includes the matched text to the
result.

-n INTEGER option can be used to speed up the scan using multiple parallel processes.
-—timeout FLOAT option can be used to skip a file taking a lot of time to scan.

-—ignore <pattern> can be used to skip certain group of files.

A

—-f <output_format> is also a very important decision when you want to use the output for specific
tasks/have requirements. Here we are using json as scancode workbench imports json files only.

For the complete list of options, refer All Available Options.

20 Chapter 1. Aboutcode Projects

AboutCode

Running The Scan

Now, run the scan with the options decided:

./scancode -f json-pp -clpeui -n 2 —--ignore "x.java" --timeout 20 samples sample.json

A Progress report is shown:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 2 _
—process(es) ...

Building license detection index...Done.

Scanning files...

[###### A AHAHARAAFAHA] 4]

Scanning done.

Scan statistics: 41 files scanned in 38s.

Scan options: infos, licenses, copyrights, packages, emails, urls with 2
—process (es) .

Scanning speed: 1.23 files per sec.

Scanning time: 33s.

Indexing time: 5s.

Saving results.

Core Options

Basic Scan Type Options

Option lists are two-column lists of command-line options and descriptions, documenting a program’s options. For
example:

-¢, --copyright Scan <input> for copyrights. [default]
-1, --license Scan <input> for licenses. [default]
-p, --package Scan <input> for packages. [default]
-e, --email Scan <input> for emails.
-u, --url Scan <input> for urls.
-i, --info Include information such as:

* size,

* type,

¢ date,

* programming language,
* shal and md5 hashes,
* is/isn’t binary/text/archive/media/source/script

etc.

Note: Options -c, -1, and -p are default, but only if none of the six options (i.e. -c, -1, -p, -e, -u and -i) are used
explicitly. If any of combination of these options are used, scancode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general information.

1.1. Scancode-Toolkit Documentation 21

AboutCode

Note: These options, i.e. -c, -1, -p, -€, -u, and -i can be used together. As in, instead of . /scancode -c -i -p,
you can write . /scancode —cip and it will be the same.

--license-score INTEGER Do not return license matches with scores lower than this score.

A number between 0 and 100. [default: 0] Here, a bigger number means a better
match, i.e. setting a higher license score translates to a higher threshold (with
equal or less number of matches).

--license-text Include the matched text for the detected licenses with the output report.
--license-url-template TEXT Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key. [default:
https://enterprise.dejacode.com/urn/urn:dje:license:{ }]

Note: These 3 options, ——license-score, ——license—-text, and ——license-url-template doesn’t
have any effect unless ——1icense is requested.

Core Options

-n, --processes INTEGER Scan <input> using n parallel processes. [default: 1]

--verbose Print verbose file-by-file progress messages.
--quiet Do not print summary or progress messages.
--diag Include additional diagnostic information such as error messages or result details.

--timeout FLOAT Stop scanning a file if scanning takes longer than a timeout in seconds. [default:
120]

--reindex-licenses Force a check and possible reindexing of the cached license index.

Documentation/Help Options

-h, --help Show the Help text and exit.

--examples Show the Command Examples Text and exit.

--about Show information about ScanCode and licensing and exit.
--version Show the version and exit.

Comparing Progress Message Options

Default Progress Message:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 _
—process(es) ...

Building license detection index...Done.

Scanning files...

[####HAHAFHAHAFAAHAFA] 43

Scanning done.

(continues on next page)

22 Chapter 1. Aboutcode Projects

https://enterprise.dejacode.com/urn/urn:dje:license

AboutCode

(continued from previous page)

Scan statistics: 43 files scanned in 33s.

Scan options: infos, licenses, copyrights, packages, emails, urls with 1 _
—process(es) .

Scanning speed: 1.4 files per sec.

Scanning time: 30s.

Indexing time: 2s.

Saving results.

Progress Message with ——verbose:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 _
—process (es) ...

Building license detection index...Done.

Scanning files...

Scanned: screenshot.png

Scanned: README

Scanned: zlib/dotzlib/ChecksumImpl.cs
Scanned: zlib/dotzlib/readme.txt

Scanned: zlib/gcc_gvmat64/gvmat64d.S
Scanned: zlib/ada/zlib.ads

Scanned: zlib/infback9/infback9.c
Scanned: zlib/infback9/infback9.h
Scanned: arch/zlib.tar.gz

Scanning done.

Scan statistics: 43 files scanned in 29s.

Scan options: infos, licenses, copyrights, packages, emails, urls with 1 _
—process(es) .

Scanning speed: 1.58 files per sec.

Scanning time: 27s.

Indexing time: 2s.

Saving results.

With the ——quiet option enabled, nothing is printed on the Command Line.

——timeout Option

This option sets scan timeout for each file (and not the entire scan). If some file scan exceeds the specified timeout,
that file isn’t scanned anymore and the next file scanning starts. This helps avoiding very large/long files, and saves
time.

Also the number(timeout in seconds) to be followed by this option can be a floating point number, i.e. 1.5467.

Scancode Output Formats

Scan results generated by Scancode are available in different formats, to be specified by the following options.

Output Options

-f, --format <format> Set <output_file> format to one of:
* CSV

e html,

1.1. Scancode-Toolkit Documentation 23

AboutCode

* html-app,
* json,

* json-pp,
* jsonlines,
e spdx-rdf,

e spdx-tv

or use <format> as the path to a custom template file.

By default, if nothing is specified, Output format is json.

Warning: In later versions, i.e. 3.x, this format changes significantly. Instead of this format, i.e. . /scancode
——format html, a more concise format . /scancode ——-html is used.

csv format

Scancode can publish results in the useful .csv format.

The following code performs a scan on the samples directory, and publishes the results in csv format.

./scancode -lpceiu —-f csv samples sample.csv

The first line of the csv file contains the headings, and they are:

Resource,

type,

name,

base_name,

extension,

date,

size,

shal,

md>5,

files_count,
mime_type,

file_type,
programming_language,
is_binary,

is_text,

is_archive,

is_media,

is_source,

is_script,

scan_errors,
license__key,
license___score,
license__short_name,
license__category,
license___owner,
license__homepage_url,
license__text_url,
license__reference_url,

24

Chapter 1. Aboutcode Projects

AboutCode

* license__spdx_license_key,
* license__spdx_url,

* matched_rule__identifier,

e matched_rule__license_choice,
¢ matched_rule__licenses,

* copyright,

* copyright_holder,

¢ author,

e email,

e start_line,

¢ end_line,

e url,

* package__type,

* package_ name,

* package__version,

* package__primary_language,
* package__summary,

* package__description,

* package__size,

» package__release_date,

* package__homepage_url,
 package__notes,

* package__bug_tracking_url,
* package__vcs_repository,

* package__copyright_top_level

Each subsequent line represents one element, i.e. can be any of the follwoing:
* license
* copyright
* package
* email
e url

So if there’s multiple elements in a file, they are each given an entry with the details mentioned earlier.

1.1. Scancode-Toolkit Documentation 25

AboutCode

777147423c98b42a6a25
README, flle,PEA[lrIE README, , ,238, ELLE 99d9a 6 6 9 26¢hi a,,text/plain,ASCII
True,False,False,False,F

Fa Ke
9cf4d QDSZ‘?I)TZTfofuacuhfsPhbdm,,Tﬂ plain,ASCIT
Fal!e,Fal! True,False 000 G000C0NG0ALOOCAGE
,jboss-eula B P rietary F ,JBoss Community,,http ository.jboss.org/licenses/
j 1¥ oss-eula'l,,,,,,3,188, . 0urransar
By n500600600600600605605650560560
B apoa6006006006006056056066066060

.com/company,
com/Licenses
9 6f95df9c9ee3i a 3093 e 64b04bb983e34, , text/plain, ASCIT
True,False,Fal a E r v e a ety
oupS/LICENSE, , s ssnrnnrnnrnnsss, 1@pl-2.1- plus,l . - later,Copyleft Limited,Free Softw ion (FSF),h
gpl-2.1-standalone.html,ht 1gpl-2.1-standalone.html,h nterpr .dejacode.com/urn/
1gpl-2.1-plus,LGPL-2.1+,https://spdx.org/licenses/LGPL-2.1,1gpl-2.1-plus_2.RULE,False, [u'lgpl-2.1-plus'],,,,,, 1,502, ,,,sssss11ss
(6802 = A B AN A0 0N G 0000 COB NG GO0 "Copyright (c) 1991, 1999 Free ty Fnunda‘rmn TR NAG U0 DO0ONE 00008
G842 H=, 050006 00000600005 60050560050 oftware Foundation, Inc
L= 0p00000600600605605605 60560 yr e e Ty osnosnosnonn
FLICENSE, ;5555 0arsarsarssrssvssvsirs t ree Software Foundafmn,,,,u?4..,,,,,,,,,,,,,,
fLICENSE ndom Hacker.
,False,Fal R r et r R R R ey

9a2fe89f6TfBc97e2baade3ds

Line 1, Column 1 Tab Size: 4 Plain Text

html format

Scancode supports formatting the Output result is a simple HTML format, which helps quick visualization of the
detected licence/copyright and other main information in the form of tables.

The following code performs a scan on the samples directory, and publishes the results in csv format.
./scancode -lpceiu —-f html samples sample.html
The HTML page generated has these following Tables:

» Copyright and Licenses Information

* File Information

 Package Information

* Licenses (Links to Dejacode/License Homepage)

26 Chapter 1. Aboutcode Projects

AboutCode

Copyrights and Licenses Information

start end what value
samples/JGroups/EULA 3 108 | license jboss-eula
samples/JGroups/EULA 104 | 104 | copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/LICENSE 496 | 497 | copyright
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroupsilicenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroupsi/licenses/Igpl.txt 496 | 497 | copyright
samples/JGroups/licenses/bouncycastle.txt S| 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license mit
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroupsilicenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-1.1.txt 20 23 copyright
sambles/JGrouns/licenses/apache-2.0.txt 2 202 | license anache-2.0
4 »
File Information
path type name extension date size shal md5
samplesiscreenshot.png file screenshot.png .png gg_l;é 622754 | 01ff4b1de0bcBcT5cIccabed6eB0c1802d6976d4 bBef5a90777147423c98042a6a25e57a
samples/README file README gg_lfé 238 598h3cadda718999199d9achh7634f67dc31c9ab | f0829167711dfa70aa0460f26cbd5cda
samples/IGroups directory | JGroups Mone | 241280 | None Nonge
directory | zlib None | 268762 [None None
samples/arch directory | arch Mone | 28103 | None MNong
samples/JGroups/EULA file EULA gg_l;é 8156 | eb232aaD424ecadc4136904e6143072aaa9cHde | Obelaceb8296727efM0ac0biBe6bdbd
samples/JGroups/LICENSE file LICENSE gg_l;é 26430 | e60c27B08B6fI50fcIee36992bBedabeciObes | 7fbc338309ac3biefcd64b04bbI03e34
samples/JGroupsflicenses directory | licenses Mone | 54604 | None None
samples/JGroups/src directory | src None | 152090 | None Nong
sampleslIGroupsficenses/igpl.txt file Igpl.txt At gg_l;é 26934 | BflaB37d2e2ed1bdbIeb0laldcchbcl2oc055Tel | f14599a2f08916/f8c0Te2baade3d575
samples/JGroupsflicenses/bouncycastle.txt file bouncycastle_bxt At gg_l;é 1186 T4iacbDe9a734479f9cd893b5be 3fe 1bfE51bTE0 Sfffdded65a5705969f62b128381185
ples/JG fapache-1.1.txt file apache-1.1.6¢t ot gg_lfé 2037 | 186d9195787chf2e54010066159395640e06d11 | S8cB09d7735128/4fdb0128=e57fb430e
ples/JG fapache-2.0.txt file apache-2.0.txt ot gg};é 11560 | 47b573e3824cd5e02ala3ae99e2735049¢025624 | d273d63619cIaeaf15cdal7642204f87
samples/JGroupsflicenses/cpl-1.0.td file cph-1.0.txt ot gg_l;é 11987 | 681cf776bcd79752543042490ecTed22a291d888 | 9a6d2c9acT3d59eb3dd38e3009750d14
samples/JGroups/src/RouterStub.java file RouterStub.java Jjava gg_lgé 9913 clf6818fBeeTbddccof444bcB4c099729dT716d52 eecfe23494acbcd8088c93bc1e83c T2

1

1.1. Scancode-Toolkit Documentation

27

AboutCode

samples/archiziib.tar.gz plain tarball archive
Licenses
short_name reference_url homepage_url
apache-1.1 | Apache 1.1 permissive | Apache Software Foundation %ps:h’enterpnse.de]acude.canﬂurn.'urn:d]e license:apache- g apache orgllicenses/
apache-z.0 | Apache 2.0 Permissive | Apache Software Foundation %’Mm}wjm—mm hatpfiwwnw apache orglicenses!
boost-1.0 Boost 1.0 Permissive | Boost Jl;p_s:HEnleIp_rise.dejac—ude.cumfurn.fum:dje—:license:hnosl- hitpJiwww boost orgiusersiicense hitml
co-by-2.5 CC-BY-2.5 Permissive | Creative Commons %Mm}ij hitpdicreativecommons.org/licensesfby2. 5/

cmr-no CMR License permissive | SMP - ot mTh

Research AS —_

cpl-1.0 CPL1.0 S:ﬂﬁ'ﬂzﬂ IEM hitps:fienterprise.dejacode. comfurndurn: dieclicense:cpl-1.0 | httpJiwww.eclipse.org/legalicpl-v10.btml
gpl-2.0- GPL 2.0 or later with 4da | Copyleft o L hitps:fienterprise.dejacode. comfurnfurn:djeclicense:gpl-2.0-
plus-ada exception Limited T plus-ada
jboss-eula | JBoss EULA Proprietary JBoss Community hatps:iienterprise.dejacode. comfurndurn: dieclicense: jboss-

Free eula
Igpl-2.1- LEPL 2.1 or later Copyleft Free Software Foundation hatps:fienterprise.dejacode.comfurnfurn:djeclicense:igpl-2.1- | httpZwww.gnu.orgflicensesiold-licenses/igpl-2.1-
plus B Limited (FSF) plus standalome. html
mit MIT License Permissive | MIT hitps:iienterprise dejacode comfurmdurn: djeclicense:mit hitp-iiopensource. org/ficensesimit-license. php
puhlic_— Public Damain F'uhlic_ Unspecified h_Itps:{fEnIeIpﬁse.dejacode.cnrru’urnfum:d license:public- hitpah linfo.orglpublicdomain.himl
domain Domain domain e
zlib ZLIE License Permissive | zlib hatps:iienterprise. dejacode comfurndurn: djeclicense:zlib it hwanw.zlib net!

Generated with ScanCode and provided on an "AS 15" BASIS, WITHOUT WARRAMNTIES OR CONDITIONS OF ANY KIND, either express or implied. Mo content created from ScanCode should be conside
scanning tool fram nexE Inc. and others. Visit httpdfwww.nexb.com and https:github. com/nexElscancode-toolkit! for support and download.

html-app Format

Scancode also supports formatting the output in a HTML visualization tool, which is more helpful than the standard
HTML format.

The Files scanned are shown in the left sidebar, and the section on the right contains seperate tabs for the following:

e License Summary

* Copyright Summary
¢ Clues

* File Details

* Packages

Note: The HTML app also contains a Search option to easily find what you are looking for.

Warning: The html-app feature has been deprecated and you should use Scancode Workbench instead to visualize
scan results. The official repo.

28 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-workbench

AboutCode

License Summary Copyright Summary Clues File Details

Total Files Scanned: 43

No License Found
ZLIE License

LGPL 2.1 or later

samples

License Summary Copyright Summary Clues File Details

Total Files Scanned: 43

No Copyright Found

Henrik Rawn

Jean-loup Gailly and Mark Adler
Mark Adler

Free Software Foundation, Inc.
Jean-loup Gailly.

Red Hat, Inc.

the Free Software Foundation
Erian Goetz and Tim Peierls
Christian Michelsen Research
Dmitriy Anisimkoy

JBozEs Inc.
Jean-loup Gailly

Jean-boup Gailly, Brian Raiter and Gilles Vollant.
Legion Of The Bouncy Castle

Red Hat Middleware LLC

The Apache Software Foundation.

1.1. Scancode-Toolkit Documentation

29

AboutCode

License Summary Copyright Summarny Clues File Details Packages
Show entries search:
Path - L] Name Extens Date Size SHA1 MDS File MIME]
Rl ion count P
samples/arch directony arch 26103 1
les/archizlib il fibt . 2017-09- 28108 sT6f0ccie534d7isf5d640007 20b2370751abfc0sbb3556c1 lication’:
samples/archiziib tar.gz =) zlib tar gz targz a5 [———— dB114bsa application/-
samples/}Groups directony JGoups 241280 14
plesiIGIOUpSIEULA file EULA 2017-09- 5156 eh232aa4a24ecatcd 136904 Obenaceb&296727eff0acobf textlplain
22 e6143b7Zaaasciade Secbdb3
2017-09- e6lc2e780BEE05d0c0ae3E Tipc338300ac3dfeicdsabodh -
samples/JGroups/LICENSE file: LICENSE 26430 text/plain
i e 22 s82baedabecobos boo3e3a =
samples/IGroups/licenses directony licenses 54604 5
samplesiIGroupsilicenses/ap file apache-1.1.0 o 2019-09- 2837 166d919578Tfcbi2e5401b96. Bc200d7T35f26f4fdb0 128225 textlplain
ache-1.1.txt 18 E150305640206011 Tid 308
samples/JGroupsliicenses/ap fle apache-2.0.t a 2017-00- 11550 A7h573e3824cd5e02ala3ae d273d6361%%9aeaf1ScdafTe textiplain
ache-2.0.txt 22 O0e2735b4%e0256ed 422c4f87
samples/IGroupsliicenses/bo fle bouncycastle tet o 2017-09- N es T4fachOenaT34479iocdassh offfidadesssasToseenfezbiz textiplain
uncycastle. td 22 She3felbfGs1bTE0 538185
samplesi)Groupsilicensesiop fle cpl-Lobd - 2017-09- 11887 EB1cfrTEbcd7975254344249 9abd2c9ae73d50sb3dd38e3 textiplain
L.t 22 DecTed22a20fdE83 000750414
4 L3

Showing 1 to 10 of 43 entries

Previous E 2 3 4 =] HNext

json Format

Scancode by default outputs scan results in JSON format.
The entire JSON file is structured in the following manner:

At first some general information on the scan, what options were used, nnumber of files etc. And then all the files
follow.

"scancode_notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS,
—WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No,,
—content created from\nScanCode should be considered or used as legal advice._
—Consult an Attorney\nfor any legal advice.\nScanCode is a free software code,
—scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-
—toolkit/ for support and download.",

"scancode_version": "2.2.1",

"scancode_options": {
"——copyright": true,
"--package": true,
"—-—info": true,
"--license-score": 10,
"-—license-text": true,
"——format": "Jjson-pp"

by
"files_count":
"files": [

{

43,

"file_path_1":
"file_type_1":
s

"samples/JGroups/licenses/apache-1.1.txt",
"file",

(continues on next page)

30 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

"file_path_1": "samples/JGroups/licenses/apache-1.2.txt",
"type_type_2": "file",
}o

Note: The default json format prints the whole report without linebreaks/spaces/indentations, which can be ugly to
look at.

json-pp Format

json-pp stands for JSON Pretty-Print format. In the previous format, i.e. simple json, the whole output is printed
in one line, which isn’t well suited for getting information if you’re looking at the file itself (or printing at stdout). So
this option formats the output results in json but in a properly spaced and indented manner, and is easy to look at.

Here’s a sample JSON output for one file

{
"path": "samples/JGroups/licenses/apache-1.1.txt",

"type": "file",

"name": "apache-1.1.txt",
"base_name": "apache-1.1",
"extension": ".txt",
"date": "2019-09-18",
"size": 2937,

"shal": "186d9195787£fcbf2e5401b966159395640e06d11",
"md5": "8c909d7735£28f4fdb0128ee57fb430e",
"files_count": null,

"mime_type": "text/plain",

"file_type": "ASCII text, with CRLF line terminators",
"programming_language": null,

"copyrights": [

{
"statements": [
"Copyright (c) 2000 The Apache Software Foundation."
]I
"holders": [
"The Apache Software Foundation."
]I
"authors": [],
"start_line": 4,
"end_line": 5
}
]I
"packages": []
}I

jsonlines Format

Scancode also has a jsonlines format option, where each report of a file scanned is formatted in one line. Here is
a sample line from a report generated by the jsonlines format:

1.1. Scancode-Toolkit Documentation 31

AboutCode

{"files":[{"path":"samples/zlib/ada", licenses":[], "copyrights":[], "packages":[]}]}

Note: This jsonlines format also omits other file information like type, name, date, extension, shal and md5
hashes, programming language etc.

Comparing Different json Output Formats

Default json Output:

4P sample-deflic.json

{"scancode notice":"Generated with ScanCode and provided on an %"AS IS\" BASIS, WI

json-pp Output:

32 Chapter 1. Aboutcode Projects

AboutCode

"path": "samples/J)Groups/licenses/apache-1.1.txt",
"type": "file",
"name": "apache-1.1.txt",
"base name": "apache-1.1",
"extension": ".txt",
"date": "2819-089-18",
"size": 2037,
"shal": "186d9195787fcbf2e5401b966159395640e06d11",
"md5": "8c909d7735T28Ff4fdb0128ee57Th430e",
"files count": ,
"mime type": "text/plain",
"file type": "ASCII text, with CRLF line terminators"”,
"programming language": 1,
"is binary": false,
"is text":
"is archive":
"is media":
"15 source": false,
"is script": false,
"scan errors": [],
"copyrights": [
{

"statements": [
"Copyright (c) 2000 The Apache Software Foundation.

1.
"holders": [

"The Apache Software Foundation."
1.
"authors": [1,
"start line": 4,
"end line": 5

"statements": [1],
"holders": [1,
"authors": [
"the Apache Software Foundation"”
1.
"start line": 28,
"end line": 23
I}
1,

"packages": []

Documentation

AboutCode

jsonlines Output:

spdx-rdf Format

SPDX stands for “Software Package and Data Exchange” and is an open standard for communicating software bill of
material information (including components, licenses, copyrights, and security referances).

Learn more about SPDX specifications here and in this GitHub repository.

Here the file is structured as a dictionary of named properties and classes using W3C’s RDF Technology.

34 Chapter 1. Aboutcode Projects

https://spdx.org/
https://spdx.org/specifications
https://github.com/spdx/spdx-spec
https://www.w3.org/RDF/

AboutCode

spdx-tv Format

This format is another SPDX variant, with the output file being structured in the following manner:

It starts with:

Document Information

SPDXVersion: SPDX-2.1

DatalLicense: CCO-1.0

DocumentComment : <text>Generated with ScanCode and provided on an "AS IS" BASIS, ,
—WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied. No content created from
ScanCode should be considered or used as legal advice. Consult an Attorney

for any legal advice.

ScanCode is a free software code scanning tool from nexB Inc. and others.

Visit https://github.com/nexB/scancode-toolkit/ for support and download.</text>

Creation Info

Creator: Tool: ScanCode 2.2.1
Created: 2019-09-22T21:55:04%2

After a section titled #Packages, a list follows.

1.1. Scancode-Toolkit Documentation 35

AboutCode

Package

kageName: samples
gelownloadLocation: NOASSERTION
geVerificationCode:
geLicenseDeclared: NOASSERTION
geLicenseConcluded: NOASSERTION
geLicenseInfoFromFiles: Apache-1.
geLicenseInfoFromFiles: Apache-2.8
geLicenseInfoFromFiles: BSL-1.0
gelicenseInfoFromFiles: CC-BY-2.5
gelLicenseInfoFromFiles: CPL-1.08
geLicenseInfoFromFiles: LGPL-2.1+
geLicenseInfoFromFiles: MIT
geLicenseInfoFromFiles: Zlib
geLicenseInfoFromFiles: LicenseRef-cmr-no
geLicenseInfoFromFiles: LicenseRef-gpl-2.0-plus-ada
geLicenseInfoFromFiles: LicenseRef-jboss-eula
gelLicenseInfoFromFiles: LicenseRef-public-domain
geCopyrightText: <text>(c) 2004 by Henrik Rawn
opyright Henrik Ravn 2084
right (c) 1991, 1999 Free Software Foundation, Inc.
(c) 1995-26085, 2010, 26811, 2012 Jean-loup Gailly.
(c) 1995-20088 Mark Adler
1995-2816 Jean-loup Gailly, Brian Raiter and Gilles Vollant.
1995-2011 Mark Adler
1995-2012 Jean-loup Gailly

Each File information is listed under a #F i 1e title, for each of the files.

¢ FileName

¢ FileChecksum

¢ LicenseConcluded
¢ LicenselnfolnFile
¢ FileCopyrightText

An example goes as follows:

36 Chapter 1. Aboutcode Projects

AboutCode

File

FileName: ./samples/JGroups/EULA

FileChecksum: SHAl: eb232aaB424eca9c4136904e6143b72aaa%cfade
LicenseConcluded: NOASSERTION

LicenseInfoInFile: LicenseRef-jboss-eula

FileCopyrightText: <text=Copyright 20066 Red Hat, Inc.
=/text=

File

FileName: ./samples/JGroups/

FileChecksum: SHAL: e6@c2e78

LicenseConcluded: MOASSERTION

LicenseInfoInFile: LGPL-2.1+

FileCopyrightText: <text=Copyright (c) 1991, 1999 Free Software Foundation, Inc.
yrighted by the Free Software Foundation

After the files section, there’s a section for licences under a #L1icences title, with the following information for each
licence:

¢ LicenselD
¢ LicenseComment
¢ ExtractedText

Here’s an example:
Extracted Licenses

code-toolkit/blob/develop/ c code/data/licenses/cmr-no.yml

ncode-toolkit/blob/develop/sre ensedcode/data/1icenses/cmr-no.yml

code-toolkit/blob/develop/src/licensedcode/data/licenses/gpl-2.08-plus-ada.yml

-See details at https://github.com/ne: cancode-toolkit/blob/develop/s sedcode/data/licenses/gpl-2.0-plus .yml

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to create their own
output template which can be passed to the ——format argument. Scancode makes this very easy, as it uses the
popular Jinja2 template engine. Simply pass the path to the custom template to the ——format argument, or drop it
in a folder to src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html (file name and extension does not
matter) with the particular data I wish to see. In this case, I am only interested in the license and copyright data for
this particular scan.

templatel.html:
[
{% if results.license_copyright %}
{% for location, data in results.license_copyright.items () %}

(continues on next page)

1.1. Scancode-Toolkit Documentation 37

AboutCode

(continued from previous page)

{% for row in data %}
location:"{{ location }}",
{$ if row.what == 'copyright' $}copyright:"{{ row.valuel|escape }}",{% endif %}
{% endfor %}
{% endfor %}
{%$ endif %}

Now I can run scancode using my newly created template:

$./scancode —-f template2.html -c samples/ t.Jjson
Scanning files...

[###HHHHAHHHHHHEHRHHH A AR H SR HRHE] 40
Scanning done.

Now are results are saved in t . json and we can easily view them with head t. json:

[
location:"samples/JGroups/LICENSE",
copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

location:"samples/JGroups/LICENSE",
copyright:"copyrighted by the Free Software Foundation",

Controlling Scancode Output and Filters

Output Control Options

--strip-root Strip the root directory segment of all paths.

--full-root Report full, absolute paths.

Note: The options ——strip-root and ——full-root can’t be used together, i.e. any one option may be used in
a single scan.

Note: The default is to always include the last directory segment of the scanned path such that all paths have a
common root directory.

——strip-root Vs. ——full-root

For a default scan of the “samples” folder, this a comparision between the default, strip-root and full-root
options.

These two changes only the “path” attribute of the file information. For this comparision we compare the “path”
attributes of the file LICENSE inside JGroups directory. The paths are

The default

"path": "samples/JGroups/LICENSE",

38 Chapter 1. Aboutcode Projects

AboutCode

For the ——full-root option, the path relative to the Root of your local filesystem.

"path": "/home/ayansm/Desktop/GSoD/scancode-toolkit-versions/scancode-toolkit-2.2.1/
—samples/JGroups/LICENSE"

For the ——strip-root option, the root directory (here samples) is removed from path :

"path": "JGroups/LICENSE"

Pre-Scan Options

Pre-Scan Options

--ignore <pattern> Ignore files matching <pattern>.

——ignore Option

In a scan, all files inside the directory specified as an input argument is scanned. But if there are some files which you
don’t want to scan, the ——ignore option can be used to do the same.

A sample usage:

./scancode —--ignore =.java samples samples. json

Here, Scancode ignores files ending with .java, and continues with other files as usual.

Glob pattern matching is useful for excluding a group of files, by using patterns in their names. For more information
on Glob pattern matching refer these resources:

¢ Linux Manual

¢ Wildcard Match Documentation.

Post-Scan Options
Post-Scan options activate their respective post-scan plugins which execute the task.
Post-Scan Options

--mark-source Set the “is_source” flag to true for directories that contain over 90% of source
files as direct children.

Note: The ——-mark-source option has no effect unless the ——info scan is requested.

--only-findings Only return files or directories with findings for the requested scans. Files and
directories without findings are omitted (not considering basic file information as
findings).

1.1. Scancode-Toolkit Documentation 39

http://man7.org/linux/man-pages/man7/glob.7.html
https://facelessuser.github.io/wcmatch/glob/

AboutCode

—-mark-source Plugin

The mark-source option marks the “is_source” attribute of a directory to be “True”, if more than 90% of the files
under that directory is source files, i.e. their “is_source” attribute is “True”.

When the following command is executed to scan the samples directory with this option enabled,

./scancode -clpieu -f Jjson-pp samples samples.json —--mark-source

Then, the following directories are marked as “Source”, i.e. their “is_source” attribute is changed from “false” to
13 2
True”.

* samples/JGroups/src

* samples/zlib/iostream2

e samples/zlib/gcc_gvmat64
* samples/zlib/ada

e samples/zlib/infback9

—-only-findings Plugin

This option removes from the scan results, the files where nothing significant has been detected, like files which doesn’t
contain any licences, copyrights, emails or urls(if requested in the scan options), and isn’t a package.

Note: This also changes in the result displayed, the number of files scanned.

For example, scanning the sample files without this option, displays in it’s report information of 43 files. But after
enabling this option, the result shows information for only 31 files.

1.1.3 Basic Tutorials

How To Extract Archives

ScanCode Toolkit provides archive extraction. This command can be used before running a scan over a codebase
in order to ensure all archives are extracted. Archives found inside an extracted archive are extracted recursively.
Extraction is done in-place in a directory and named '—extract'.

Name 4 Date Modified Size Kind
l zlib.tar.gz Feb 8, 2016, 4:04 PM 28 KB gzip compressed archive
> [zlib.tar.gz-extract Today, 4:18 PM - Folder
Usage:

./extractcode [OPTIONS] <input>

40 Chapter 1. Aboutcode Projects

AboutCode

Extraction example:

Extract all archives found in the samples directory:

./extractcode samples

How to specify Scancode Output Format

JSON

Currently, scancode’s default behavior is output scan results in . json format. For example, running the command
scancode /path/to/target/dir will output scan results in json format to stdout. A command in this for-
mat: scancode /path/to/target/dir /path/to/output.json will save the scancode results to the
specified json file.

HTML

If you want HTML output of scancode results, you can pass either the ——format or the ——html argument to
scancode depending on version. Newer versions of scancode us —html. The following commands will output scan
results in a formatted html page or simple web application:

* scancode —--format html /path/to/target/dir /path/to/output.html
* scancode --format html-app /path/to/target/dir /path/to/output.html
* scancode —--html /path/to/target/dir /path/to/output.html

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to create their own
output template which can be passed to the ——format argument. Scancode makes this very easy, as it uses the
popular Jinja2 template engine. Simply pass the path to the custom template to the ——format argument, or drop it
in a folder to src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html (file name and extension does not
matter) with the particular data I wish to see. In this case, I am only interested in the license and copyright data for
this particular scan.

templatelZ.html:
[
{% if results.license_copyright %}
{% for location, data in results.license_copyright.items () %}
{% for row in data %}
location:"{{ location }}",
{% if row.what == 'copyright' %}copyright:"{{ row.valuel|escape }}",{% endif %}
{% endfor %}
{% endfor %}
{% endif %}

Now I can run scancode using my newly created template:

1.1. Scancode-Toolkit Documentation 41

AboutCode

$./scancode —-f template2.html -c samples/ t.Jjson
Scanning files...
R i i i i)

Scanning done.

Now are results are saved in t . json and we can easily view them with head t. json:

[
location:"samples/JGroups/LICENSE",
copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

location:"samples/JGroups/LICENSE",
copyright:"copyrighted by the Free Software Foundation",

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed by default with Scan-
code.

Warning: This tutorial uses the 2.2.1 version of Scancode Toolkit. If you are using a newer version of Scancode
Toolkit, check respective versions of this documentation.

Warning: This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be added.

Setting up a Virtual Environment

Scancode Toolkit 2.2.1 and Workbench 2.4.1 is not compatible with python 3.x so we will create a virtual environment
using the Virtualenv tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan2.2. 1:

virtualenv -p /usr/bin/python2.7 venv-scan2.2.1
source venv-scan2.2.l/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 2.2.1 tarball or .zip archive from the Toolkit GitHub Release Page under assets
options. Download and extract the Archive from command line:

For .zip archive:

’unzip scancode-toolkit-2.2.1.zip

For .tar.bz2 archive:

’tar -xvf scancode-toolkit-2.2.1.tar.bz2

42 Chapter 1. Aboutcode Projects

https://docs.python-guide.org/dev/virtualenvs/
https://github.com/nexB/scancode-toolkit/releases/tag/v2.2.1

AboutCode

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted directory and run:

./scancode —-help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed by default with
Scancode Toolkit. Here’s the directory structure and respective files:

1.1. Scancode-Toolkit Documentation 43

AboutCode

4 g samples
4 g arch
- Zlib.tar.gz-extract
zlib.tar.gz
4 e JGroups
- g licenses
[» SIC
 EULA
I LICENSE

|

ada

dotzlib
gce_gvmat6d
infback9
lostream2
adler32.c
deflate.c
deflate.h
zlib.h

zutil.c

zutil.h
README
screenshot.png -

rrrrrerriilRRR S

We notice here that the sample files contain a package z1ib.tar.gz. So we have to extract the archive before
running the scan, to also scan the files inside this package.

44 Chapter 1. Aboutcode Projects

AboutCode

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

|

m samples
4 g arch
4 o 7lib.tar.gz-extract
4 rzlib-1.2.8
I adler32.c
k zlib.h
k zutilh
zlib.tar.gz

Note: ——shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan, according to your
requirements.

1.

A

The Basic Scan options, i.e. —c, -1, -p, —e, —u, and —1i are to be decided, according to your requirements. If
you do not need one specific type of information (say, licences), consider removing it, because more things you
scan for, longer it will take for the scan to complete.

-—license-score INTEGER is to be set if licence matching accuracy is desired (Default is 0, and in-
creasing this means a more accurate match). Also using ——1icense-text includes the matched text to the
result.

-n INTEGER option can be used to speed up the scan using multiple parallel processes.
-—timeout FLOAT option can be used to skip a file taking a lot of time to scan.
-—ignore <pattern> can be used to skip certain group of files.

—-f <output_format> is also a very important decision when you want to use the output for specific
tasks/have requirements. Here we are using json as scancode workbench imports json files only.

For the complete list of options, refer All Available Options.

1.1. Scancode-Toolkit Documentation 45

AboutCode

Running The Scan

Now, run the scan with the options decided:

./scancode -f json-pp -clpeui -n 2 —--ignore "x.java" --timeout 20 samples sample.json

A Progress report is shown:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 2 _
—process(es) ...

Building license detection index...Done.

Scanning files...

[###### A AHAHARAARAHA] 41

Scanning done.

Scan statistics: 41 files scanned in 38s.

Scan options: infos, licenses, copyrights, packages, emails, urls with 2
—process (es) .

Scanning speed: 1.23 files per sec.

Scanning time: 33s.

Indexing time: 5s.

Saving results.

How to Visualize Scan results

In this simple tutorial example, we import results from a basic scan preformed on the samples directory distributed
by default with Scancode, and visualize the outputs through Scancode Workbench.

Warning: This tutorial uses the 2.2.1 version of Scancode Toolkit, and Scancode Workbench 2.4.1 (last Scancode
Workbench release supporting 2.2.1 version of Scancode Toolkit). If you are using a newer version of Scancode
Toolkit, check respective versions of this documentation.

Warning: This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be added.

Setting up a Virtual Environment

Scancode Workbench 2.4.1 is not compatible with python 3.x so we will create a virtual environment using the
Virtualenv tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan2.2. 1:

virtualenv -p /usr/bin/python2.7 venv-scan2.2.1
source venv-scan2.2.l/bin/activate

Setting up Scancode Workbench

According to the Install Building Requirements, we have to install Node.js 6.x or later. Refer to Node.js install
instructions here.

You can also run the following commands:

46 Chapter 1. Aboutcode Projects

https://docs.python-guide.org/dev/virtualenvs/
https://nodejs.org/en/download/package-manager/

AboutCode

sudo apt-get install -y nodeijs
sudo npm install npm@5.2.0 -g

After Node. js and npm is installed and get the Scancode Workbench 2.4.1 tarball from the Workbench Release
Page. Extract the package and then launch Scancode Workbench:

. /AboutCode-Manager

This opens the Workbench.

Note: Scancode Workbench used to be named Aboutcode Manager before 2.6.1

Note: You can also build Scancode Toolkit and Scancode Workbench from source. Clone the repository, don’t forget
to checkout to the specific release using git checkout <release>, and follow the build instructions.

Importing Data into Scancode Workbench

1. Clickonthe File —-> Import JSON FileorPressCtrl + I.
2. Select the file from the pop-up window.

3. Select a Name and Location (where you want it later) for the .sqlite output file.

Note: You can also import a .sqlite file you’ve saved in the past to load scan results. As it is much faster, once you’ve
imported the JSON file and a corresponding SQLite file has been created, you shouldn’t repeat this. Instead import
the SQLite file next time you want to visualize the same scan result.

Visualization

Views

Refer Scancode Workbench Views for more information on Visualization.

The dashboard has a general overview.

1.1. Scancode-Toolkit Documentation 47

https://github.com/nexB/scancode-workbench/releases/tag/v2.4.1
https://github.com/nexB/scancode-workbench/releases/tag/v2.4.1

AboutCode

AboutCode Manager - sample.sqlite

T3

M Dashboard
® 43 12 17 1
Ll Files Scanned Unigue Licenses Detected Unique Copyrights Detected Packages Detected
= Programming Languages License Categories License Keys Package Types
?
114
1
0.9
084
07+
0.6
0.5
04+
0.3
024
other cc-by-25 M pl-10 0.1
Proprietary Free [Public Domain W public-domain M boost-1.0 o :
other C++ B GAs W Ada W c# I Copyleft Limited W Igpl-2.1-plus o
W oava WC B Permissive W zlib

plain tarball

There are 3 principal views (They appear by the same order in the GIFs):
e Chart Summary View,
¢ Table View,

* Components Summary View.

Filters

You can also click any file/directory on the file list located at the right, to filter the results such that it only contains
results from that File/Directory.

Componets

Refer Creating Conclusions for more information on Components.
In the table view,
1. Apply filters by selecting Files/Directories
Right Click on the Left Panel
Select Edit Component

A pop-up opens with fields, make necessary edits and Save.

A

Go to the Component Summary View to see the Component.

48 Chapter 1. Aboutcode Projects

AboutCode

How to set what will be detected in Scan

ScanCode allows you to scan a codebase for license, copyright and other interesting information that can be discovered
in files. The following options are available for detection when using ScanCode Toolkit:

Syntax Option | Clue/Information

-c, —copyright Scan for copyrights. [default]

-1, —license Scan for licenses. [default]

-1, —info Scan for file information. [default]
-p, —package Scan for packages. [default]

-e, —email Scan for emails.

-u, —url Scan for urls.

The following examples will use the samples directory that is provided with the ScanCode Toolkit code. All exam-
ples will be saved in the html-app format, which is a dynamic, interactive html page. The other formats options are a
JSON file and a static html file. See How to Run a Scan for more information.

Scan for all clues:

To scan for licenses, copyrights, urls, emails, package information, and file information

./scancode -clip -e -u —--format html-app samples samples.html

Scan for license and copyright clues:

’./scancode -cl ——format html-app samples samples.html

Scan for emails and URLs:

./scancode -e -u —--format html-app samples samples.html

Scan for package information:

’./scancode -p ——format html-app samples samples.html

Scan for file information:

./scancode -1 -—format html-app samples samples.html

To see more example scans:

./scancode —--examples

1.1. Scancode-Toolkit Documentation 49

https://github.com/nexB/scancode-toolkit/tree/master/samples

AboutCode

1.1.4 “How To” Guides

How To Add a New License for Detection

How to add a new license for detection?

To add new license, you first need to select a new and unique license key (mit and gpl-2.0 are some of the existing
license keys). All licenses are stored as plain text files in the src/licensedcode/data/licenses directory using their key
as part of the file names.

You need to create a pair of files:
« afile with the text of the license saved in a plain text file named key. LICENSE

* asmall text data file (in YAML format) named key.yml that contains license information such as:

key: my-license
name: My License

The key name can contain only these symbols:

¢ Jowercase letters from a to z,

* numbers from 0O to 9,and

* dash - and . period signs. No spaces.
Save these two files in the src/licensedcode/data/licenses/ directory.
Done!

See the src/licensedcode/data/licenses/ directory for examples.

How to Add New License Rules for Enhanced Detection
ScanCode relies on license rules to detect licenses. A rule is a simple text file containing a license text or notice or
mention. And a small YAML text file that tells ScanCode which licenses to report when the text is detected.

See the FAQ for a high level description of How to Add New License Rules for Enhanced Detection.

How to add a new license detection rule?

A license detection rule is a pair of files:
* aplain text rule file that is typically a variant of a license text, notice or license mention.
 a small text data file (in YAML format) documenting which license(s) should be detected for the rule text.

To add new rule, you need to pick a unique base file name. As a convention we like to include the license key(s) that
should be detected in that name to make it more descriptive. For example: mit_and_gpl-2.0 is a good base name. Add
a suffix to make it unique if there is already a rule with this base name. Do not use spaces or special characters in that
name.

Then create the rule file in the src/licensedcode/data/rules/ directory using this name replacing selected_base_name
with the base name you selected:

selected_base_name.RULE

50 Chapter 1. Aboutcode Projects

AboutCode

Save your rule text in this file.

Then create the YAML data file in the src/licensedcode/data/rules/ directory using this name:

selected_base_name.yml

For a simple mit and gpl-2.0 detection license keys detection, the content of this file can be this YAML snippet:

licenses:
- mit
- gpl-2.0

Save these two files in the src/licensedcode/data/licenses/ directory and your are done!
See the src/licensedcode/data/rules/ directory for examples.
More (advanced) rules options:
* you can use a notes: text field to document this rule.
* if no license should be detected for your .RULE text, do not add a list of license keys, just add a note.

* .RULE text can contain special text regions that can be ignored when scanning for licenses. You can mark a
template region in your rule text using {{double curly braces}} and up to five words can vary and still match
this rule. You must add this field in your .yml data file to mark this rule as a template

template: yes

* By using a number after the opening braces, more than five words can be skipped. With {{10 double curly
braces }} ten words would be skipped.

» To mark a rule as detecting a choice of licenses, add this field in your .yml file:

license_choice: yes

See the #257 issue and the related #258 pull request for an example: this adds a new rule to detect a combination of
MIT or GPL.

1.1.5 How it all Works
Overview

How does ScanCode work?

For license detection, ScanCode uses a (large) number of license texts and license detection ‘rules’ that are compiled
in a search index. When scanning, the text of the target file is extracted and used to query the license search index and
find license matches.

For copyright detection, ScanCode uses a grammar that defines the most common and less common forms of copy-
right statements. When scanning, the target file text is extracted and ‘parsed’ with this grammar to extract copyright
statements.

Scan results are provided in various formats:
* a JSON file simple or pretty-printed,
* SPDX tag value or XML RDF formats,
* CSV,

1.1. Scancode-Toolkit Documentation 51

https://github.com/nexB/scancode-toolkit/issues/257
https://github.com/nexB/scancode-toolkit/pull/258

AboutCode

* a simple unformatted HTML file that can opened in browser or as a spreadsheet.
For each scanned file, the result contains:
¢ its location in the codebase,
* the detected licenses and copyright statements,
* the start and end line numbers identifying where the license or copyright was found in the scanned file, and
» reference information for the detected license.

For archive extraction, ScanCode uses a combination of Python modules, 7zip and libarchive/bsdtar to detect archive
types and extract these recursively.

Several other utility modules are used such as libmagic for file and mime type detection.

1.1.6 Contribute

Contributing to Code Development

See CONTRIBUTING.rst for details.

Code layout and conventions

Source code is in src/ Tests are in tests/.

There is one Python package for each major feature under src/ and a corresponding directory with the same name
under tests (but this is not a package by design).

Each test script is named test_XXXX and while we love to use py.test as a test runner, most tests have no
dependencies on py.test, only on the unittest module (with the exception of some command line tests that
depend on pytest monkeypatching capabilities.

When source or tests need data files, we store these in a data subdirectory.

We use PEPS conventions with a relaxed line length that can be up to 90’ish characters long when needed to keep the
code clear and readable.

We store pre-built bundled native binaries in bin/ sub-directories of each src/ packages. These binaries are orga-
nized by OS and architecture. This ensure that ScanCode works out of the box either using a checkout or a download,
without needing a compiler and toolchain to be installed. The corresponding source code for the pre-built binaries are
store in a separate repository at https://github.com/nexB/scancode-thirdparty-src.

We store bundled thirdparty components and libraries in the thirdparty directory. Python libraries are stored
as wheels, eventually pre-built if the corresponding wheel is not available in the Pypi repository. Some of these
components may be advanced builds with bug fixes or advanced patches.

We write tests, a lot of tests, thousands of tests. Several tests are data-driven and use data files as test input and
sometimes data files as test expectation (in this case using either JSON or YAML files). The tests should pass on
Linux 64 bits, Windows 32 and 64 bits and on MacOSX 10.6.8 and up. We maintain two CI loops with Travis
(Linux) at https://travis-ci.org/nexB/scancode-toolkit and Appveyor (Windows) at https://ci.appveyor.com/project/
nexB/scancode-toolkit.

When finding bugs or adding new features, we add tests. See existing test code for examples.

52 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/blob/master/CONTRIBUTING.rst
https://github.com/nexB/scancode-thirdparty-src
https://travis-ci.org/nexB/scancode-toolkit
https://ci.appveyor.com/project/nexB/scancode-toolkit
https://ci.appveyor.com/project/nexB/scancode-toolkit

AboutCode

Running tests

ScanCode comes with over 13,000 unit tests to ensure detection accuracy and stability across Linux, Windows and
macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the py . test script to run the whole test suite. This is installed by pytest which
is bundled with a ScanCode checkout and installed when you run . /configure).

If you are running from a fresh git clone and you run ./configure and then source bin/activate the
py . test command will be available in your path.

Alternatively if you have already configured but are not in an activated “virtualenv” the py . test command is avail-
able under <root of your checkout>/bin/py.test

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel (and faster) For instance: py.test
—n4 runs the tests on 4 CPUs. We typically run the tests in verbose mode with py .test -vvs -n4.

You can also run a subset of the test suite as shown in the CI configs https://github.com/nexB/scancode-toolkit/blob/
develop/appveyor.yml#L6 e,g, py.test -n 2 -vvs tests/scancode runs only the tests scripts present in
the tests/scancode directory. (You can pass a path to a specific test script file there too).

See also https://docs.pytest.org for details or use the py.test —h command to show the many other options avail-
able.

One useful option is to run a select subset of the test functions matching a pattern with the —k option for instance:
py.test -vvs -k tcpdump would only run test functions that contain the string “tcpdump” in their name or
their class name or module name .

Another useful option after a test run with some failures is to re-run only the failed tests with the ——1f option for
instance: py.test -vvs —-1f would only run only test functions that failed in the previous run.

pip requirements and the configure script

ScanCode use the configure and configure.bat (and etc/configure.py behind the scenes) scripts to
install a virtualenv , install required packaged dependencies as pip requirements and more configure tasks such that
ScanCode can be installed in a self-contained way with no network connectivity required.

Earlier unreleased versions of ScanCode where using buildout to install and configure eventually complex depen-
dencies. We had some improvements that were merged in the upstream buildout to support bootstrapping and
installing without a network connection and When we migrated to use pip and wheels as new, improved and faster
way to install and configure dependencies we missed some of the features of buildout like the recipes, being
able to invoke arbitrary Python or shell scripts after installing packages and have scripts or requirements that are
operating system-specific.

ScanCode requirements and third-party Python libraries

In a somewhat unconventional way, all the required libraries are bundled aka. copied in the repo itself in the thirdparty/
directory. If ScanCode were only a library it would not make sense. But its is first an application and having a well
defined frozen set of dependent packages is important for an app. The benefit of this approach (combined with the
configure script) means that a mere checkout of the repository contains everything needed to run ScanCode except
for a Python interpreter.

1.1. Scancode-Toolkit Documentation 53

https://github.com/nexB/scancode-toolkit/blob/develop/appveyor.yml#L6
https://github.com/nexB/scancode-toolkit/blob/develop/appveyor.yml#L6
https://docs.pytest.org
https://virtualenv.pypa.io/en/stable/
https://github.com/pypa/pip

AboutCode

Using ScanCode as a Python library

ScanCode can be used alright as a Python library and is available as as a Python wheel in Pypi and installed with pip
install scancode-toolkit.

How to cut a new release:

* run bumpversion with major, minor or patch to bump the version in:
— src/scancode/__init__ .py
— setup.py
— Update the CHANGELOG:.rst
e commit changes and push changes to develop:
- git commit -m "commit message"
- git push --set-upstream origin develop
* merge develop branch in master and tag the release.
— git checkout master
— git merge develop
- git tag -a vl1.6.1 -m "Release v1.6.1"
— git push —--set-upstream origin master
- git push —--set-upstream origin vl1.6.1

* draft a new release in GitHub, using the previous release blurb as a base. Highlight new and noteworthy changes
from the CHANGELOG:.rst.

* runetc/release/release. sh locally.
* upload the release archives created in the dist / directory to the GitHub release page.

* save the release as a draft. Use the previous release notes to create notes in the same style. Ensure that the link
to thirdparty source code is present.

* test the downloads.
* publish the release on GitHub

e then build and publish the released wheel on Pypi. For this you need your own Pypi credentials (and get
authorized to publish Pypi release: ask @pombredanne) and you need to have the t wine package installed and
configured.

Build a .wh1 with python setup.py bdist_wheel

Run twine with twine upload dist/<path to the built wheel>

Once uploaded check the published release at https://pypi.python.org/pypi/scancode-toolkit/

Then create a new fresh local virtualenv and test the wheel installation with: pip install
scancode-toolkit

54

Chapter 1. Aboutcode Projects

https://pypi.python.org/pypi/scancode-toolkit/

AboutCode

Contributing to the Documentation

Continious Integration

The documentations are checked on every new commit through Travis-CI, so that common errors are avoided and
documentation standards are enforced. Travis-CI presently checks for these 3 aspects of the documentation :

1. Successful Builds (By using sphinx-build)
2. No Broken Links (By Using 1ink—-check)
3. Linting Errors (By Using Doc8)

Style Checks Using Doc8
How To Run Style Tests

In the project root, run the following command:

$ doc8 --max-line-length 100 docs/source/scancode-toolkit

Note: Only the scancode-toolkit documentation style standards are enforced presently.

A sample output is:

Scanning. ..

Validating...

docs/source/scancode-toolkit/misc/licence_policy_plugin.rst:37: D002 Trailing,,
—whitespace

docs/source/scancode-toolkit/misc/faqg.rst:45: D003 Tabulation used for indentation
docs/source/scancode-toolkit/misc/faq.rst:9: D001 Line too long
docs/source/scancode-toolkit/misc/support.rst:6: D005 No newline at end of file

Total files scanned = 34
Total files ignored = 0

Total accumulated errors = 326
Detailed error counts:
— CheckCarriageReturn = 0

— CheckIndentationNoTab = 75

— CheckMaxLineLength = 190

— CheckNewlineEndOfFile = 13

— CheckTrailingWhitespace = 47
— CheckValidity = 1

Now fix the errors and run again till there isn’t any style error in the documentation.

What is Checked

PyCQA is an Organization for code quality tools (and plugins) for the Python programming language. Doc8 is a
sub-project of the same Organization. Refer this README for more details.

What is checked:

e invalid rst format - D000

1.1. Scancode-Toolkit Documentation 55

https://github.com/PyCQA/doc8/blob/master/README.rst

AboutCode

* lines should not be longer than 100 characters - D001

RST exception: line with no whitespace except in the beginning

RST exception: lines with http or https urls

RST exception: literal blocks

RST exception: rst target directives

* no trailing whitespace - D002

* no tabulation for indentation - D003

* no carriage returns (use unix newlines) - D004

¢ no newline at end of file - D005

Extra Style Checks

1. Headings

(Refer) Normally, there are no heading levels assigned to certain characters as the structure is deter-
mined from the succession of headings. However, this convention is used in Python’s Style Guide
for documenting which you may follow:

with overline, for parts
 with overline, for chapters
=, for sections
-, for subsections
A, for subsubsections
“, for paragraphs
2. Heading Underlines

Do not use underlines that are longer/shorter than the title headline itself. As in:

Correct

Extra Style Checks

Incorrect

Extra Style Checks

Note: Underlines shorter than the Title text generates Errors on sphinx-build.

3. Internal Links

Using :ref: is advised over standard reStructuredText links to sections (like ' Section
title”_) because it works across files, when section headings are changed, will raise warnings
if incorrect, and works for all builders that support cross-references. However, external links are
created by using the standard " Section title’ _ method.

4. Eliminate Redundancy

56 Chapter 1. Aboutcode Projects

http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections

AboutCode

If a section/file has to be repeated somewhere else, do not write the exact same section/file twice.
Use .. include: ../README.rst instead. Here, . ./ refers to the documentation root, so
file location can be used accordingly. This enables us to link documents from other upstream folders.

5. Using : ref: only when necessary

Use : ref: to create internal links only when needed, i.e. it is referanced somewhere. Do not create
referances for all the sections and then only referance some of them, because this created unnecessary
referances. This also generates ERROR in restructuredtext-1lint.

Roadmap

This is a high level list of what we are working on and what is completed.

Legend
completed ‘1 In progress Planned, not started

Work in Progress

(see Completed features below)

Packages manifests and dependencies parsers

e Docker images base (as part of: https://github.com/pombredanne/conan) #651

. RubyGems base and dependencies #650 (code in https://github.com/nexB/scancode-toolkit-contrib/)
ey Perl, CPAN (basic in https://github.com/nexB/scancode-toolkit-contrib/)

. Go : parsing for Godep in https://github.com/nexB/scancode-toolkit-contrib/

«)’ Windows PE #652

. RPMs dependencies #649

. Windows Nuget dependencies #648

. Bower packages #654

. Python dependencies #653

. CRAN

. Plain packages

J other Java-related meta files (SBT, Ivy, Gradle, etc.)

. Debian debs

. other JavaScript (jspm, etc.)

. other Linux distro packages

1.1. Scancode-Toolkit Documentation 57

https://github.com/pombredanne/conan
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/

AboutCode

License Detection

. support and detect license expressions (code in https://github.com/nexB/license-expression)

» ‘1 support and detect composite licenses

. support custom licenses
. move licenses data set to external separate repository
. Improved unknown license detection

. sync with external sources (DejaCode, SPDX, etc.)

Copyrights

. speed up copyright detection

. improved detected lines range

. streamline grammar of copyright parser

J normalize holders and authors for summarization
. normalize and streamline results data format

Core features

. pre scan filtering (ignore binaries, etc)

. pre/post/ouput plugins! (worked as part of the GSoC by @yadsharaf)

. scan plugins (e.g. plugins that run a scan to collect data)

Y support Python 3 #295

. transparent archive extraction (as opposed to on-demand with extractcode)

« 1’ scancode.yml configuration file for exclusions, defaults, scan failure conditions, etc.

. support scan pipelines and rules to organize more complex scans

. scan baselining, delta scan and failure conditions (such as license change, etc) (will be spawned as its own
DeltaCode project)

. dedupe and similarities to avoid re-scanning. For now only identical files are scanned only once.

. Improved logging, tracing and error diagnostics

. native support for ABC Data (See AboutCode Data : ABCD)

58 Chapter 1. Aboutcode Projects

https://github.com/nexB/license-expression

AboutCode

Classification, summarization and deduction

o File classification #426

. summarize and aggregate data #377 at the top level

Source code support (some will be spawned as their own tool)

e symbols : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

» ‘1’ metrics : some elements in https://github.com/nexB/scancode-toolkit-contrib/

Compiled code support (will be spawned as their own tool)

. ELFs : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

« 1 Java bytecode : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/
NS Windows PE : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/
e Mach-O : parsing complete in in https://github.com/nexB/scancode-toolkit-contrib/

. Dalvik/dex
Data exchange

. SPDX data conversion #338
Packaging

. simpler installation, automated installer
. distro-friendly packaging

. unbundle and package as multiple libaries (commoncode, extractcode, etc)

Documentation

. integration in a build/CI loop
. end to end guide to analyze a codebase
. hacking guides

. API doc when using ScanCode as a library

1.1. Scancode-Toolkit Documentation 59

https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/
https://github.com/nexB/scancode-toolkit-contrib/

AboutCode

Cl integration

Plugins for CI (Jenkins, etc)

Integration for CI (Travis, Appveyor, Drone, etc)

Other work in progress

ScanCode server: Spawned as its own project: https://github.com/nexB/scancode-server. Will include Integra-
tion / webhooks for Github, Bitbucket.

VulnerableCode: NVD and CVE lookups: Spawned as its own project: https://github.com/nexB/vulnerablecode

ScanCode Workbench: desktop app for scan review: Spawned as its own project: https://github.com/nexB/
scancode-workbench

DependentCode: dynamic dependencies resolutions: Spawned as its own project: https://github.com/nexB/
dependentcode

Package mining and matching

(Note that this will be spawned in its project) Some code is in https://github.com/nexB/scancode-toolkit-contrib/

3T exact matching
S attribute-based matching
3 fuzzy matching
peer-reviewed meta packages repo

basic mining of package repositories

Other

Crypto code detection

Completed features

Core scans

exact license detection

approximate license detection
copyright detection
file information (size, type, etc.)

URLSs, emails, authors

60

Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-server
https://github.com/nexB/vulnerablecode
https://github.com/nexB/scancode-workbench
https://github.com/nexB/scancode-workbench
https://github.com/nexB/dependentcode
https://github.com/nexB/dependentcode
https://github.com/nexB/scancode-toolkit-contrib/

AboutCode

Ouputs and Ul

. JSON compact and pretty

. plain HTML tables, also usable in a spreadsheet

. fancy HTML ‘app’ with a file tree navigation, and scan results filtering, search and sorting
. improved scans GUI now its own project: https://github.com/nexB/aboutcode-manager
. simple scan summary

. SPDX output

Package and dependencies

. common model for packages data

. basic support for common packages format

. RPM packages base

. NuGet packages base

. Python packages base

. PHP Composer packages support with dependencies

. Java Maven POM packages support with dependencies

. npm packages support with dependencies
Speed!
. accelerate license detection indexing and scanning; include caching
. scan using multiple processes to speed up overall scan
. cache per-file scan to disk and stream final results
Other
. archive extraction with extractcode
. conversion of scan results to CSV
. improved error handling, verbose and diagnostic output

1.1. Scancode-Toolkit Documentation

61

https://github.com/nexB/aboutcode-manager

AboutCode

Google Summer of Code 2017 - Final report

Project: Plugin architecture for ScanCode

Yash D. Saraf yashdsaraf @gmail.com

This project’s purpose was to create a decoupled plugin architecture for ScanCode such that it can handle plugins at
different stages of a scan and can be coupled at runtime. These stages were,

1. Format :

In this stage, the plugins are supposed to run after the scanning is done and post—scan plugins are called. These
plugins could be used for:

¢ converting the scanned output to the given format (say csv, json, etc.)
HOWTO

Here, a plugin needs to add an entry in the scancode_output_writers entry point in the following format :
'<format> = <module>:<function>"'.

e <format> is the format name which will be used as the command line option name (e.g csv or json).
e <module> is a python module which implements the out put hook specification.
e <function> is the function to which the scan output will be passed if this plugin is called.

The <format> name will be automatically added to the ——format command line option and (if called) the scanned
data will be passed to the plugin.

2. Post-scan :

In this stage, the plugins are supposed to run after the scanning is done. Some uses for these plugins were:
¢ summarization of scan outputs
e.g A post-scan plugin for marking i s_source to true for directories with ~90% of source files.
« simplification of scan outputs

e.g The ——only-findings option to return files or directories with findings for the requested
scans. Files and directories without findings are omitted (not considering basic file information as
findings)).

This option already existed, I just ported it to a post-scan plugin.
HOWTO

Here, a plugin needs to add an entry in the scancode_post_scan entry point in the following format ' <name>
= <module>:<function>'

¢ <name> is the command line option name (e.g only-findings).
* <module> is a python module which implements the post__scan hook specification.
e <function> is the function to which the scanned files will be passed if this plugin is called

The command line option for this plugin will be automatically created using the <function> ‘s doctring as its help
text and (if called) the scanned files will be passed to the plugin.

62 Chapter 1. Aboutcode Projects

mailto:yashdsaraf@gmail.com
https://github.com/nexB/scancode-toolkit

AboutCode

3. Pre-scan :

In this stage, the plugins are supposed to run before the scan starts. So the potential uses for these types of plugins
were to:

* ignore files based on a given pattern (glob)
« ignore files based on their info i.e size, type etc.
 extract archives before scanning

HOWTO

Here, a plugin needs to add an entry in the scancode_pre_scan entry point in the following format : '<name>
= <module>:<class>'

* <name> is the command line option name (e.g ignore).
e <module> is a python module which implements the pre_ scan hook specification.

e <class> is the class which is instantiated and its appropriate method is invoked if this plugin is called. This
needs to extend the plugincode.pre_scan.PreScanPlugin class.

The command line option for this plugin will be automatically created using the <class> ‘s doctring as its help
text. Since there isn’t a single spot where pre—scan plugins can be plugged in, more methods to PreScanPlugin
class can be added which can represent different hooks, say to add or delete a scan there might be a method called
process_scan.

If a plugin’s option is passed by the user, then the <class> is instantiated with the user input and its appropriate
aforementioned methods are called.

4. Scan (proper):

In this stage, the plugins are supposed to run before the scan starts and after the pre—scan plugins are called. These
plugins would have been used for

* adding or deleting scans
* adding dependency scans (whose data could be used in other scans)

No development has been done for this stage, but it will be quite similar to pre—scan.

5. Other work:

Group cli options in cli help

Here, the goal was to add command line options to pre-defined groups such that they are displayed in their respective
groups when scancode -horscancode —-helpiscalled. This helped to better visually represent the command
line options and determine more easily what context they belong to.

Add a Resource class to hold all scanned info * Ongoing *

Here, the goal was to create a Resource class such that it holds all the scanned data for a resource (i.e a file or a
directory). This class would go on to eventually encapsulate the caching logic entirely. For now, it just holds the info
and path of a resource.

1.1. Scancode-Toolkit Documentation 63

https://github.com/nexB/scancode-toolkit/issues/709
https://github.com/nexB/scancode-toolkit/issues/738

AboutCode

6. What’s left?

* Pre-scan plugin for archive extractions

* Scan (proper) plugins

* More complex post-scan plugins

 Support plugins written in languages other than python

Additionally, all my commits can be found here .

1.1.7 Miscellaneous

FAQ

Why ScanCode?

We could not find an existing tool (open source or commercial) meeting our needs:
* usable from the command line or as library
* running on Linux, Mac and Windows
 written in a higher level language such as Python

* easy to extend and evolve

How to get started with development?

ScanCode is primarily developed in Python with Python 2.7.
Source code is at:

* https://github.com/nexB/scancode-toolkit.git

* https://github.com/nexB/scancode-thirdparty-src.git

Open a terminal, clone the scancode-toolkit repository, cd to the clone directory and run:

source configure

On Windows open a command prompt, cd to the clone directory and run instead:

’configure

The configure script creates an isolated Python virtual environment ready for development usage. Rerun configure
or source bin/activate when opening a new terminal. Rerun configure after a pull or a branch merge.

To run the all tests run this command. Be patient: there are several thousand tests!:

’py.test

To run the tests faster on four processors in parallel run:

’py.test -n 4

64 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/commits/develop?author=yashdsaraf
https://github.com/nexB/scancode-toolkit.git
https://github.com/nexB/scancode-thirdparty-src.git

AboutCode

See also Running tests for more details

More info:
» Source code and license datasets are in the /src/ directory.
* Test code and test data are in the /tests/ directory.
* Datasets and test data are in /data/ sub-directories.

* Third-party components are vendored in the /thirdparty/ directory. ScanCode is self contained and should not
require network access for installation or configuration of third-part libraries.

* Additional pre-compiled vendored binaries are stored in bin/ sub-directories of the /src/ directory with their
sources in this repo: https://github.com/nexB/scancode-thirdparty-src/

* Porting ScanCode to other OS (FreeBSD, etc.) is possible. Enter an issue for help.
* Bugs and pull requests are welcomed.

¢ See the wiki and CONTRIBUTING.rst for more info.

Can licenses be synchronized with the DejaCode license library?

The license keys are the same that are used in DejaCode. They are kept in sync by hand in the short term. There is also a
ticket to automate that sync with DejaCode and possibly other sources. See https://github.com/nexB/scancode-toolkit/
issues/41

How is ScanCode different from licensecheck?

At a high level, ScanCode detects more licenses and copyrights than licensecheck does, reporting more details about
the matches. It is likely slower.

In more details: ScanCode is Python app using a data-driven approach (as opposed to carefully crafted regex):

« for license scan, the detection is based on a (large) number of license full texts (~900) and license notices/rules
(~1800) and is data driven as opposed to regex-driven. It detects exactly where in a file a license text is found.
Just throw in more license texts to improve the detection.

* for copyright scan, the approach is natural language parsing (using NLTK) with POS tagging and a grammar; it
has a few thousand tests.

* licenses and copyrights are detected in texts and binaries

Licensecheck (available here for reference: /https://metacpan.org/release/App-Licensecheck) is a Perl script using
hand-crafted regex patterns to find typical copyright statements and about 50 common licenses. There are about 50
license detection tests.

A quick test (in July 2015, before a major refactoring but for this notice still valid) shows that are several things not
detected by licensecheck that are detected by ScanCode.

How can | integrate ScanCode in my application?

More specifically, does this tool provides an API which can be used by us for the integration with my system to trigger
the license check and to use the result?

In terms of API, there are two stable entry points:

1.1. Scancode-Toolkit Documentation 65

https://github.com/nexB/scancode-thirdparty-src/
https://github.com/nexB/scancode-toolkit/issues/41
https://github.com/nexB/scancode-toolkit/issues/41
https://metacpan.org/release/App-Licensecheck

AboutCode

#. The JSON output when you use it as a command line tool from any language or when you call the scan-
code.cli.scancode function from a Python script. #. Otherwise the scancode.cli.api module provides simple function
if you are only interested in calling a certain service on a given file (such as license detection or copyright detection)

Can | install ScanCode in a Unicode path?

Not for now. See https://github.com/nexB/scancode-toolkit/issues/867 There is a bug in virtualenv on Python2 https:
//github.com/pypa/virtualenv/issues/457 At this stage and until we completed the migration to Python 3 there is no
way out but to use a path that contains only ASCII characters.

The line numbers for a copyright found in a binary are weird. What do they mean?

When scanning binaries, the line numbers are just a relative indication of where a detection was found: there is no
such thing as lines in a binary. The numbers reported are based on the strings extracted from the binaries, typically
broken as new lines with each NULL character. They can be safely ignored.

Support

Post questions and bugs as Github tickets at: https://github.com/nexB/scancode-toolkit/issues

Ask question on StackOverflow using the [scancode] tag.

Runtime Performance Reports

These are reports of runtimes for real life scans:
2015-09-03 by @rrjohnston
* On Ubuntu 12.04 x86_64 Python 2.7.3 and ScanCode Version 1.3.1

» Specs: 40 threads (2 processors, 10 cores each, with hyperthreading) 3.1 GHz 128GB RAM 8TB controller
RAIDS

* scanned 195676 files in about 16.7 hours or about 3.25 file per second (using defaults licenses and copyrights)

* notes: this version of ScanCode runs on a single thread so it does not make good use of extra processing power.

Plugin Architecture

Abstract:

This project’s purpose is to create a decoupled plugin architecture for scancode such that it can handle plugins at
different stages of a scan and can be coupled at runtime. These stages would be

* Pre - scan: Before starting the scan
E.g Plugins to handle extraction of different archive types or instructions on how to handle certain types of files.
* Scan proper: During the scan

E.g Plugins to add more options for the scan, maybe to ignore certain files or add some command line arguments,
create new scans (alternative or as a dependency for further scanning) etc.

¢ Post - scan: After the scan

66 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/issues/867
https://github.com/pypa/virtualenv/issues/457
https://github.com/pypa/virtualenv/issues/457
https://github.com/nexB/scancode-toolkit/issues

AboutCode

E.g Plugins for output deduction, formatting or converting output to other formats (such as json, spdx, csv, xml, etc.)

Upside of building a pluggable system would be to allow easier additions and rare modifications to code, without
having to really fiddle around with core codebase. This will also provide a level of abstraction between the plugins
and scancode so that any erroneous plugin would not affect the functioning of scancode as a whole.

Description:

This project aims at making scancode a “pluggable” system, where new functionalities can be added to scancode at
runtime as “plugins”. These plugins can be hooked into scancode using some predefined hooks. I would consider
pluggy as the way to go for a plugin management system.

Why pluggy?

Pluggy is well documented and maintained regularly, and has proved its worth in projects such as py.test. Pluggy relies
on hook specifications and hook implementations (callbacks) instead of the conventional subclassing approach which
may encourage tight-coupling in the overlying framework. Basically a hook specification contains method signatures
(no code), these are defined by the application. A hook implementation contains definitions for methods declared in
the corresponding hook specification implemented by a plugin.

As mentioned in the abstract, the plugin architecture will have 3 hook specifications (can be increased if required)

1. Pre - scan hook

¢ Structure -

prescan_hookspec = HookspecMarker ('prescan')

@prescan_hookspec
def extract_archive(args):

Here the path of the archive to be extracted will be passed as an argument to the extract_archive function which will
be called before scan, at the time of extraction. This will process the archive type and extract the contents accordingly.
This functionality can be further extended by calling this function if any archive is found inside the scanning tree.

2. Scan proper hook

e Structure

scanproper_hookspec = HookspecMarker ('scanproper')

@scanproper_hookspec
def add_cmdline_option(args):

This function will be called before starting the scan, without any arguments, it will return a dict containing the click
extension details and possibly some help text. If this option is called by the user then the call will be rerouted to the
callback defined by the click extension. For instance say a plugin implements functionality to add regex as a valid
ignore pattern, then this function will return a dict as:

{
'name': '—-—-ignore-regex',
'options' : {

(continues on next page)

1.1. Scancode-Toolkit Documentation 67

AboutCode

(continued from previous page)

'default': None,
'multiple': True,

'metavar': <pattern>
}I
'help': 'Ignore files matching regex <pattern>'
'call _after': 'is_ignored'

According to the above dict, if the option —ignore-regex is supplied, this function will be called after the is_ignored
function and the data returned by the is_ignored function will be supplied to this function as its argument(s). So if the
program flow was:

scancode () scan () resource_paths () is_ignored()

It will now be edited to

scancode () scan () resource_paths () is_ignored() add_cmdline_option()

Options such as call_after, call_before, call_first, call_last can be defined to determine when the function is to be
executed.

@scanproper_hookspec
def dependency_scan (args) :

This function will be called before starting the scan without any arguments, it will return a list of file types or attributes
which if encountered in the scanned tree, will call this function with the path to the file as an argument. This function
can do some extra processing on those files and return the data to be processed as a dependency for the normal scanning
process. E.g. It can return a list such as:

['debian/copyright']

Whenever a file matches this pattern, this function will be called and the data returned will be supplied to the main
scancode function.

3. Post - scan hook

¢ Structure -

postscan_hookspec = HookspecMarker ('postscan')

@postscan_hookspec
def format_output (args):

This function will be called after a scan is finished. It will be supplied with path to the ABC data generated from the
scan, path to the root of the scanned code and a path where the output is expected to be stored. The function will
store the processed data in the output path supplied. This can be used to convert output to other formats such as CSV,
SPDX, JSON, etc.

@postscan_hookspec
def summarize_output (args) :

This function will be called after a scan is finished. It will be supplied the data to be reported to the user as well as a
path to the root of the scanned node. The data returned can then be reported to the user. This can be used to summarize
output, maybe encapsulate the data to be reported or omit similar file metadata or even classify files such as tests, code
proper, licenses, readme, configs, build scripts etc.

68 Chapter 1. Aboutcode Projects

AboutCode

¢ Identifying or configuring plugins

For python plugins, pluggy supports loading modules from setuptools entrypoints, E.g.

entry_points = {
'scancode_plugins': [
'name_of_plugin = ignore_regex',

]

This plugin can be loaded using the PluginManager class’s load_setuptools_entrypoints(‘scancode_plugins’) method
which will return a list of loaded plugins.

For non python plugins, all such plugins will be stored in a common directory and each of these plugins will have a
manifest configuration in YAML format. This directory will be scanned at startup for plugins. After parsing the config
file of a plugin, the data will be supplied to the plugin manager as if it were supplied using setuptools entrypoints.

In case of non python plugins, the plugin executables will be spawned in their own processes and according to their
config data, they will be passed arguments and would return data as necessary. In addition to this, the desired hook
function can be called from a non python plugin using certain arguments, which again can be mapped in the config
file.

Sample config file for a ignore_regex plugin calling scanproper hook would be:

name: ignore_regex
hook: scanproper
hookfunctions:
add_cmdline_option: '-—aco'
dependency_scan: '-—dc'
data:
add_cmdline_option':
- name: '
- options:
— default: None
- multiple: True
— metavar: <pattern>

—-—ignore-regex'

— help: 'Ignore files matching regex <pattern>'
— call_after: 'is_ignored'

Existing solutions:

An alternate solution to a “pluggable” system would be the more conventional approach of adding functionalities
directly to the core codebase, which removes the abstraction layer provided by a plugin management and hook calling
system.

License Policy Plugin

This plugin allows the user to apply policy details to a scancode scan, depending on which licenses are detected in
a particular file. If a license specified in the Policy file is detected by scancode, this plugin will apply that policy
information to the Resource as a new attribute: 1icense_policy.

Policy File Specification

The Policy file is a YAML (. ym1) document with the following struture:

1.1. Scancode-Toolkit Documentation 69

AboutCode

license_policies:

- license_key: mit
label: Approved License
color_code: '"#00800"
icon: icon-ok-circle

- license_key: agpl-3.0
label: Approved License
color_code: '"#008000"
icon: icon-ok-circle

- license_key: broadcom-commercial
label: Restricted License
color_code: '"#FFcc33'
icon: icon-warning-sign

The only required key is 1icense_key, which represents the scancode license key to match against the detected
licenses in the scan results.

In the above example, a descriptive label is added along with a color code and CSS id name for potential visual
display.

Using the Plugin
To apply License Policies during a ScanCode scan, specify the ——1icense-policy option.

For example, use the following command to run a File Info and License scan on /path/to/codebase/, using a
License Policy file found at ~/path/to/policy-file.yml:

$ scancode -clipeu /path/to/codebase/ —--license-policy ~/path/to/policy-file.yml —-
— json-pp
~/path/to/scan-output. json

Example Output

Here is an example of the ScanCode output after running ——1icense-policy:

{

"path": "samples/zlib/deflate.c",
"type": "file",
"licenses": [
{
"key": "zlib",
}
J 14
"license_policy": {
"license_key": "zlib",
"label": "Approved License",
"color_code": "#00800",
"icon": "icon-ok-circle"

by

"scan_errors": []

}

70 Chapter 1. Aboutcode Projects

AboutCode

1.2 Scancode-Workbench Documentation

ScanCode Workbench allows you take the scan results from the ScanCode Toolkit and create a software inventory
annotated with your summaries or conclusions (we call these Conclusions) at any levels of the codebase you choose.

The attributes you add (e.g., Name, Version, Owner, License Expression, Copyright) to your Conclusion about a single
package or file — or a higher-level group of packages and/or files — can then be exported to a JSON or SQLite file. In
addition, Conclusions created in ScanCode Workbench can be exported to DejaCode.

1.2.1 Basics

Scancode Workbench Views

Directory Tree

An interactive directory tree is always present on the left side of the application. The tree is expandable and collapsible.
This allows the user to navigate the codebase structure. If a directory is selected, only that directory and its sub-files
and folders will be shown in the view. Similarly, if a single file is selected, only information for that selected file will
be shown.

Table View

In the table view, the available clues detected by ScanCode are shown in a tabular format. A user can see provenance
clues such as license and copyright information detected by ScanCode. A user can also see the file information (e.g.
file type, file size, etc) and package information (package type, primary language of package) that was detected. The
columns can be sorted as well as shown or hidden based on what the user’s preferences. Searching for specific clues
(license names, copyrights, etc.) is also available in this view.

Chart Summary View

With the chart summary view, a user can select a node in the directory tree (i.e., a directory, folder or file) and display
a horizontal bar chart listing the values identified in the scanned codebase — that is, the clues detected by ScanCode
Toolkit — for a number of different attributes. The attributes are a subset of the columns displayed in the table view,
and can be selected by clicking the dropdown at the top of the view. The chart displays the full range of values for the
selected directory tree node and attribute and the number of times each value occurs in the scanned codebase.

Building Requirements
Linux
e Python 2.7

* Node.js version 6.x or later

e npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)

1.2. Scancode-Workbench Documentation 71

https://enterprise.dejacode.com/licenses/
https://github.com/nexB/scancode-toolkit/
https://nodejs.org/en/download/package-manager/

AboutCode

MacOS

Python 2.7
* Node.js >=6.x or later but <=8.9.4
e npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)

e Command Line Tools for Xcode (run xcode-select --install to install)

Windows

* Node.js 6.x or later
e npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)
e Python v2.7.x

— Make sure your Python path is set. To verify, open a command prompt and type python --version.
Then, the version of python will be displayed.

¢ Visual C++ Build Environment:
— Either:

% Option 1: Install Visual C++ Build Tools 2015 (or modify an existing installation) and select Common
Tools for Visual C++ during setup. This also works with the free Community and Express for Desktop
editions.

+ Option 2: Visual Studio 2015 (Community Edition or better)
— Note: Windows 7 requires .NET Framework 4.5.1

— Launch cmd, npm config set msvs_version 2015

ScanCode Workbench Platform Support
Our approach for platform support is to focus on one primary release for each of Linux, MacOS and Windows. The
Priority definitions are:

1. Primary - These are the primary platforms for build/test/release on an ongoing basis.

2. Secondary - These are platforms where the primary ScanCode Workbench release for the corresponding OS
Group should be forward-compatible, e.g., Windows 7 build should work on Windows 10. Issues reported and
traced to a Secondary platform may not be fixed.

3. Tertiary - These are any other platforms not listed as Primary or Secondary. In these cases, we will help users
help themselves, but we are likely not to fix Issues that only surface on a Tertiary platform.

72 Chapter 1. Aboutcode Projects

https://nodejs.org/en/
https://developer.apple.com/xcode/downloads/
https://nodejs.org/en/
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://visualstudio.microsoft.com/vs/older-downloads/
http://www.microsoft.com/en-us/download/details.aspx?id=40773

AboutCode

(O Desktop OS | Arch| Pri- | Notes

Group | Version ority

Win- Windows 7 | x64 | 1

dows SP1

Win- Windows 10 | x64 | 2

dows SP?

Ma- 10.9 Maver- | x64 | 1

cOS icks

Ma- 10.10 x64 | 2

cOS Yosemite

Ma- 10.11 El Capi- | x64 | 2

cOS tan

Ma- 10.12 Sierra x64 | 2

cOS

Linux Ubuntu 12.04 | x64 | 1 From Electron Docs: The prebuilt ia32 (i686) and x64 (amd64) binaries
Deb of Electron are built on Ubuntu 12.04.

Linux | Ubuntu 14.xx | x64 | 2 Verified to be able to run the prebuilt binaries of Electron.
Deb

Linux Ubuntu 16.xx | x64 | 2 Verified to be able to run the prebuilt binaries of Electron.
Deb

Linux Fedora 21 x64 | 2 Verified to be able to run the prebuilt binaries of Electron.
Linux | Debian 8 x64 | 2 Verified to be able to run the prebuilt binaries of Electron.
Linux CentOS 7.xx x64 | 7

RH

Linux RHEL 7.xx x64 | 7

RH

Electron Supported Platforms

https://electronjs.org/docs/tutorial/support#supported-platforms

The following platforms are supported by Electron:

MacOS

Only 64-bit binaries are provided for MacOS, and the minimum MacOS version supported is MacOS 10.9.

Windows

Windows 7 and later are supported, while older operating systems are not supported (and do not work). Both ia32
(x86) and x64 (amd64) binaries are provided for Windows. Please note: the ARM version of Windows is not supported

for now.

Linux

The prebuilt ia32 (1686) and x64 (amd64) binaries of Electron are built on Ubuntu 12.04, and the ARM binary is built
against ARM v7 with hard-float ABI and NEON for Debian Wheezy.

1.2. Scancode-Workbench Documentation

73

https://electronjs.org/docs/tutorial/support#supported-platforms

AboutCode

Whether the prebuilt binary can run on a distribution depends on whether the distribution includes the libraries that
Electron is linked to on the building platform, so only Ubuntu 12.04 is guaranteed to work, but the following platforms
are also verified to be able to run the prebuilt binaries of Electron:

e Ubuntu 12.04 and later
e Fedora 21
¢ Debian 8

Check for Errors in the Developer Tools

When an unexpected error occurs in ScanCode Workbench, you will normally see a dialog message which provides
details about the error and allows you to create an issue.

JSON Error

There is a problem with your JSON file. It may be
4 malformed (e.g., the addition of a trailing comma), or

there could be some other problem with the file.

Please check your file and try again.

The error thrown by the system is:

SyntaxError: Unexpected token]in JSON at position
227808

q = y

If you can reproduce the error, use this approach to get the stack trace and report the issue. Open the Developer Tools
with Ctr1+Shift+1I or Alt+Cmd+I. From there, click the Console tab. Include the error that is logged in the issue
in a code block or a file attachment.

[w ﬂ Elements Console Sources Network Timeline Profiles Application Security Audits 7 X

O Y top v () Preserve log

(*id", “scancode_notice", scancode_version’, scancode_options', files_count’, createdAt”, updatedAt’) VALUES
(NULL, 'Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied. No content created from

ScanCode should be considered or used as legal advice. Consult an Attorney

for any legal advice.

ScanCode is a free software code scanning tool from nexB Inc. and others.

Visit https://github.com/nexB/scancode-toolkit/ for support and download.','2.2.@','{"-——copyright":true,"—
license":true,"--package":true,"——email":true,"--url":true,"--info":true,"—-1license-score":0,"—
format":"json"}',3074, '2017-10-27 01:21:59.202 +00:00"', '2017-10-27 01:21:59.202 +00:00');

Add Rows Progress: 0% aboutCodeDB. js:233
/Users/jilliandaquil/Debug/AboutCode-Manager-macos-x64-2.0.8/AboutCode-Manager.app/Contents/Resourc..: 770
VY error.DatabaseError
message: "SQLITE_ERROR: unrecognized token: "'http://www.w3.0rg/XML/1998/namespace%00%00%00%00xmLns%00%00%00http: /www
name: "SequelizeDatabaseError"
» original: Error: SQLITE_ERROR: unrecognized token: "'http://www.w3.org/XML/1998/namespace%00%00%00%00xm1ns%00%00%00ht
» parent: Error: SQLITE_ERROR: unrecognized token: "'http://www.w3.org/XML/1998/namespace%00%00%00%00xm1lns%00%00%00httr
sql: "INSERT INTO “urls® ("id", url’, start_line", end_line", createdAt’, updatedAt™, fileId") VALUES (NULL, 'http://v
stack: "SequelizeBaseError: SQLITE_ERROR: unrecognized token: "'http://www.w3.org/XML/1998/namespace%s00%00%00%00xmlns
» __proto__: error.BaseError

1.2.2 Tutorials

Creating Conclusions

A Conclusion in ScanCode Workbench refers to the documentation of your analysis and conclusions about the name,
version, owner, copyright, license expression and other attributes for a single software package or file or — if you

74 Chapter 1. Aboutcode Projects

AboutCode

conclude these attributes are shared by a group of packages and/or files — for that group of packages/files.

You can record your Conclusions throughout the codebase you’re analyzing, at any level of the codebase (i.e., nodes
in the directory tree representing the codebase) you think will best reflect the results of your analysis.

To create a Conclusion, begin by navigating to the ScanDataTable view.

@ AboutCode Manager - busybox-129.2-scan_20180831_abcm_wiki_worksqlite

File Edit View Window Help

4 5 busybox-129.2

B applets

® applets_sh

8 arch

B archival

B configs

B console-tools

B coreutils

B debianutils

B docs

B e2fsprogs

B editors

B examples

B findutils
include
init
klibc-utils
libbb
libpwdgrp
loginutils
mailutils
miscutils
modutils
networking
printutils
procps
qemu_multiarch_testing
runit
scripts
selinux
shell

svsklosd

Column visibility = Showall = Hideall

Path

busybox-1.29.2/applets
busybox-1.29.2/applets/applet_tables.c
busybox-1.29.2/applets/applets.c
busybox-1.29.2/applets/busybox.mkll
busybox-
1.29.2/applets/busybox.mksuid

busybox-1.29.2/applets/individual.c

busybox-1.29.2/applets/install.sh

busybox-1.29.2/applets/Kbuild.src

busybox-1.29.2/applets/usage.c

busybox-
1.29.2/applets/usage_compressed

Activate Filters | Clear Filters
| =

-~ Show 10 v entries

Origininfo Copyrightinfo

Copyright Statements

Copyright (c) 2007 Denys Vlasenko

Copyright (c) 2007 Denys Vlasenko

Copyright 2005 Rob Landley
rob@landleynet

Copyright () 1999-2005 by Erik
Andersen

Copyright (c) 2008 Denys Vlasenko.

Showing 1to 10 of 11 entries (filtered from 2,668 total entries)

License info

Package info

License Short
Name

GPL20

GPL20

GPL20

GPL20

GPL20

File Name
applets
applet_tables.c
applets.c

busybox.mkll

busyboxmksuid

individual.c

install.sh

Kbuild.src

usage.c

usage_compressed

File
Size

582

1358

3282

1936

1170

1660

Search

File Type

Csource, ASCII text
Csource, ASCII text

POSIX shell script, ASCII text
executable

POSIX shell script, ASCII text
executable

Csource, ASCII text
POSIX shell script, ASCII text
executable

ASCIl text
Csource, ASCII text

POSIX shell script, ASCII text
executable

In the directory tree on the left, choose the directory, package or file you want to annotate, right-click that node, and
select Edit Conclusion in the menu that appears. This will display a form with the path to that node displayed
at the top of the form, and a series of attribute names (e.g., Status, Name, Version, License Expression,
Owner, Copyright) and associated textboxes, dropdowns or radio buttons to record your input.

@ AboutCode Manager - busybox-129.2-scan_20180831_abcm_wiki_worksqlite

File Edit View Window Help

4 B busybox-1.29.2

B applets

B applets_sh

8 arch

8 archival

B configs

B console-tools

B coreutils

B debianutils

B docs

B e2fsprogs

B editors

B examples

B findutils
include
init
klibc-utils
libbb
libpwdgrp
loginutils
mailutils
miscutils
modutils
networking
printutils
procps
qemu_multiarch_testing
runit
scripts
selinux
shell

svsklosd

Column visibilitv . Showall | Hide all

Path Status

busybox-1.29, Needs Attention

busybox-1.29|

busybox-129| | busybox

busybox-1.29] o

129.2)
busybox-

129.2/applets | jcense Expression
busybox-1.29)

Owner
busybox-1.29|

busybox-1.29| Copyright
busybox-1.29)
busybox- Modified
1.29.2/applet: Yes @ No
Deployed

Yes No

Code Type

Activate Filt]

~ Show 10

Notes

Origininfa | Convrisht infa

busybox-1.29.2/applets

lLicense infa.

Packace infa

ile Name
applets
applet_tables.c
applets.c

busybox.mkll

busyboxmksuid

individual.c

install.sh

Kbuild.src

usage.c

usage_compressed

File
Size

582

1358

3282

1936

1170

1660

Search:

File Type

Csource, ASCII text
Csource, ASCII text

POSIX shell script, ASCII text
executable

POSIX shell script, ASCII text
executable

Csource, ASCII text
POSIX shell script, ASCII text
executable

ASCII text
Csource, ASCII text

POSIX shell script, ASCII text
executable

1.2. Scancode-Workbench Documentation

75

AboutCode

Conclusion Definitions

The following fields are available when creating a Conclusion:

76 Chapter 1. Aboutcode Projects

AboutCode

Con-| Description

clu-

sion

Field

Sta- | Used to document status of Conclusion creation. The dropdown choices: Analyzed - A Conclusion has

tus | been created, Needs Attention - A Conclusion is flagged for further review, Original Code - A Conclusion
references code from your organization, Not Reporting - A Conclusion that will not be reported and can be
ignored.

Name The primary name for your Conclusion (usually a file, directory or library name). A Conclusion can repre-
sent any software-related object. Any Conclusion can contain one or more sub-Conclusions. The combined
Conclusion Name and Version must be unique.

Ver- | The Conclusion version number.

sion

Li- | This is the overall license (an individual license or combination of several licenses) for the Conclusion.

cense| The Conclusion form will populate a dropdown with any License Expression data detected by ScanCode

Ex- | when the imported scan was run, using the ScanCode License Expression syntax (e.g., gp1—2 . 0 represents

pres-| the GPL 2.0 license). The user can also manually add one or more License Expressions by typing in the

sion | textbox and then hitting the Enter key. The License Expression is intended to capture the facts of a license
(primarily the text, as provided by its owner), as well as an organization’s interpretation and policy regarding
that license.

Owner An Owner identifies the original creator (copyright holder) of the code covered by the Conclusion. If this
Conclusion code is in its original, unmodified state, the Conclusion owner is associated with the original
author/publisher. If this Conclusion code has been copied and modified, the Conclusion owner should be
the owner that has copied and modified it.

Copyt The Copyright notice that applies to the Conclusion code under the License Expression.

right

Mod- A Yes/No choice indicating whether the Conclusion code has been modified.

i-

fied

De- | A Yes/No choice indicating whether the Conclusion code has been deployed.

ployed

Code| The default choices are Source, Binary, Mixed and Document.

Type

Noteg Any notes or comments the user wants to record.

Fea- | The name of a product feature or codebase module that applies to the code covered by the Conclusion.

ture

Pur- | The type of code covered by the Conclusion, e.g., Core, Test, Build, Documentation.

pose

Pro- | The primary language of the Conclusion code.

gram

ming

Lan-

guagg

Homg-The homepage URL for the Conclusion code.

page

URL

Down-The download URL for the original Conclusion code.

load

URL

Li- | The URL for the primary license represented by the License Expression.

cense

URL

No- | The URL for the license notice that applies to the code covered by the Conclusion.

tice

icancode-Workbench-Documentation— —— — — — — 77

AboutCode

Importing and Exporting a JSON File

Import a ScanCode JSON File

* We have provided a set of sample scans that you can quickly review in ScanCode Workbench in order to get
a sense of its functionality and the types of information captured by a scan. The samples are located at https:
//github.com/nexB/scancode-workbench/tree/develop/samples.

* To import a ScanCode JSON file:
— Open the File menu and select Import JSON File (keyboard shortcut: Ctrl+I or +1).

— In the dialog window that opens, navigate to the JSON file you want to import, select the file and click
Open.

— You will then be prompted to choose a filename and location to save the JSON file as a SQLite database
file. Add a filename, select the folder in which you want to save the SQLite database file, and click Save.

— ScanCode Workbench will then create a SQLite database file from your JSON file, indicated by the status
message “Creating Database ...”

— Once the process has finished, the status message will be replaced by an expandable code tree and, to the
right of the tree, a table displaying provenance information generated by ScanCode.

Export a JSON file

* To export a JSON file:
— Select the File menu and then select Export JSON File (keyboard shortcut: Ctr1+E or +E).

— In the dialog window that opens, add a name for the file, navigate to the directory in which you want to
save the file and click Save.

License Policy support in ScanCode Workbench
ScanCode Workbench now has basic support for tracking and viewing license policies that have been applied to

a scancode-toolkit scan. In order for things to work, your initial scancode scan must be run with the
-—license-policy option. You can read more about that here: License Policy Plugin.

The basics

While the License Policy Plugin can be customized with any number of custom fields and values, ScanCode Work-
bench currently only supports a pre-defined set of policy labels.

license_key label
scancode_license_key | Approved License
scancode_license_key | Prohibited License
scancode_license_key | Recommended License
scancode_license_key | Restricted License

This means in order to take advantage of ScanCode Workbench’s policy features, your 1icense-policy.yml
needs to have 1icense_key and label fields at the very least.

78 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-workbench/tree/develop/samples
https://github.com/nexB/scancode-workbench/tree/develop/samples

AboutCode

Additionally, in order to take advantage of policy visualizations, Label values must be one of the 4 above values:
Approved License, Prohibited License, Recommended License or Restricted License. Later versions of ScanCode
Workbench will eventually evolve to support more dynamic policy values.

Here is a simple example of a valid 1icense-policy.yml file:

license_policies:

license_key: apache-2.0
label: Approved License
license_key: apache-1.1
label: Prohibited License
license_key: lgpl-2.1-plus
label: Recommended License
license_key: cpl-1.0
label: Restricted License

After running a scan with that particular 1icense-policy.yml file, viewing the scan in ScanCode Workbench
will look like the following:

(X X ScanCode Workbench - policy-samples.slite.

4 B samples Column visibility = Showall = Hideall = Fileinfo | Origininfo | Copyrightinfo = License info Search:
& arch
4 & JGroups

Package info

4 B i
& licenses License

@ apache-1.1txt License License License License Short License License L
®© apache-2.0.txt Path Policy Expressions Key Score Name Category Owner
B bouncycaste.txt samples/JGroups/licenses
cpl-1.0.txt
& Igpltxt samples/JGroups/licenses/apache-1.1.txt Prohibited apache-1.1 apache-1.1 100 Apache 1.1 Permissive Apache
™ s License AND public- public- 100 Public Public Software
domain domain Domain Domain Foundation
B EuLA Unspecified
b LICENSE
= b samples/JGroups/li -2.0.txt pproved apache-2.0 apache-20 100 Apache2.0 Permissive Apache
License Software
[README Foundation
[@ screenshot.png
samples/JGroups/licenses/bouncycastle.txt mit mit 988 MIT Permissive MIT
License
samples/JGroups/licenses/cpl-1.0.txt Restricted cpl-1.0 cpl-10 99.94 CPL10O Copyleft IBM
License Limited
samples/JGroups/licenses/Igpl.txt Recommended Igpl-2.1-plus lgpl-2.1- 100 LGPL2.1 Copyleft Free
License plus or later Limited Software
Foundation
(FSF)
Activate Filters | Clear Filters + + ; + ; + +
—

As you can see, files which have detected licenses that fall under a particular policy will be shown in the JSTree view
with specific icons. This way, you are able to quickly see what files fall under a specific policy.

Additionally, policy details can be found in the scan data view in their own column: License Policy. This column has
been added to both the “Origin” column set and “License info”” column set.

Navigating the Chart Summary View

Display the view

Once you have a SQLite file loaded into ScanCode Workbench, displaying the Chart Summary View is easy:

1.2. Scancode-Workbench Documentation 79

AboutCode

1. Select a file or directory in the Tree View on the left.

2. Click the chart icon in the sidebar or open the View menu and select Chart Summary View (keyboard
shortcut: Ctrl+Shift+D or +Shift+D).

Select an attribute

Use the dropdown at the top of the view to select the attribute you want to examine (e.g., Copyright Statements,
License Key). These attribute values are detected from ScanCode, and can also be viewed in the Table View.

When you select an attribute, the Chart Summary View will automatically refresh to display a horizontal bar chart
showing — in descending order of frequency — each value identified in the scanned codebase for the selected attribute
and the number of times it occurs in the codebase. You can also see the value for a particular entry in the bar chart in
a tooltip that appears when you move your cursor over the text on the left or the bar on the right.

Filter Chart Summary

You can further filter the summary results by choosing a specific directory or file in the Tree View. The chart will then
only show results for that selected directory or file.

Opening and Saving a SQlite File

Open a SQLite File

* To open a SQLite File:
— Select the File menu and then select Open SQLite File (keyboard shortcut: Ctr1+0 or +0).

— In the dialog window that opens, navigate to the SQLite file you want to open, select the file and click
Open.

Save as a New SQLite File

» To save as a new SQLite file:

— Select the File menu and then select Save As New SQLite File (keyboard shortcut: Ctr1+S or
+S).

— In the dialog window that opens, add a name for the file, navigate to the directory in which you want to
save the file and click Save.

1.3 Deltacode Documentation

Welcome to Deltacode Documentation.

1.3.1 Comprehensive Installation

DeltaCode requires Python 2.7.x and is tested on Linux, Mac, and Windows. Make sure Python 2.7 is installed first.

80 Chapter 1. Aboutcode Projects

AboutCode

System Requirements
* Hardware : DeltaCode will run best with a modern X86 processor and at least 1GB of RAM and 250MB of
disk.
 Supported operating systems : DeltaCode should run on these OSes:
1. Linux: on most recent 64-bit Linux distributions (32-bit distros are only partially supported),
2. Mac: on recent Mac OSX (10.6.8 and up),
3. Windows: on Windows 7 and up (32- or 64-bit) using a 32-bit Python.

Prerequisites

DeltaCode needs a Python 2.7 interpreter.
* On Linux:

Use your package manager to install python?2 . 7. If Python 2.7 is not available from your package
manager, you must compile it from sources.

For instance, visit https://github.com/dejacode/about-code-tool/wiki/BuildingPython270nCentos6
for instructions to compile Python from sources on Centos.

¢ On Windows:

Use the Python 2.7 32-bit (e.g. the Windows x86 MSI installer) for X86 regardless of whether you
run Windows on 32-bit or 64-bit. DO NOT USE Python X86_64 installer even if you run 64 bit
Windows.

Download Python from this url: https://www.python.org/ftp/python/2.7.14/python-2.7.14.msi

Install Python on the c: drive and use all default installer options. See the Windows installation
section for more installation details.

* On Mac:
Download and install Python from this url:

https://www.python.org/ftp/python/2.7.14/python-2.7.14-macosx 10.6.pkg

Installation on Linux and Mac

Download and extract the latest ScanCode release from: https://github.com/nexB/deltacode/releases/latest

Open a terminal in the extracted directory and run:

./deltacode --help

This will configure DeltaCode and display the command line help.

Installation on Windows

Download the latest ScanCode release zip file from: https://github.com/nexB/deltacode/releases/latest
* In Windows Explorer, select the downloaded DeltaCode zip and right-click.
* In the pop-up menu select ‘Extract All...’

¢ In the pop-up window ‘Extract zip folders’ use the default options to extract.

1.3. Deltacode Documentation 81

https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6
https://www.python.org/ftp/python/2.7.14/python-2.7.14.msi
https://www.python.org/ftp/python/2.7.14/python-2.7.14-macosx10.6.pkg
https://github.com/nexB/deltacode/releases/latest
https://github.com/nexB/deltacode/releases/latest

Abou

tCode

Once the extraction is complete, a new Windows Explorer window will pop-up.

In this Explorer window, select the new folder that was created and right-click.

In the pop-up menu select ‘Properties’

In the pop-up window ‘Properties’, select the Location value. Copy this in clipboard.
Press the start menu button.

In the search box type

cmd

Select ‘cmd.exe’ listed in the search results.
A new ‘cmd.exe’ window pops-up.

In this window (aka. a command prompt), type this (this is ‘cd’ followed by a space)

cd

then right-click in this window and select Paste. This will paste the path where you extracted DeltaCode.
Press Enter.
This will change the current location of your command prompt to the root directory where DeltaCode is installed.

Then type

deltacode —-help

Un-in

Press enter. This will configure your DeltaCode installation.
Several messages are displayed followed by the deltacode command help.

The installation is complete.

stallation

Delete the directory in which you extracted DeltaCode.

Delete any temporary files created in your system temp directory under a deltacode directory.

1.3.2 Deltacode Output: Format, Fields and Structure

Usage: deltacode [OPTIONS]

Identify the changes that need to be made to the 'old' scan file (-o or —-old)

in
a .

order to generate the 'new' scan file (-n or —-new). Write the results to
json file (-j or ——json-file) at a user-designated location. If no file

option is selected, print the JSON results to the console.

Options:

-h, —-help Show this message and exit.

—--version Show the version and exit.

-n, —-new PATH Identify the path to the "new" scan file [required]

-0, ——-old PATH Identify the path to the "old" scan file [required]

-Jj, ——Json-file FILENAME Identify the path to the .json output file

-a, ——all-delta-types Include unmodified files as well as all changed

(continues on next page)

82 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

files in the .Jjson output. If not selected, only
changed files are included.

Output Formats

DeltaCode provides two output formats for the results of a DeltaCode codebase comparison: JSON and CSV.

The default output format is JSON. If the command-line input does not include an output flag (—j or ——json-file)
and the path to the output file, the results of the DeltaCode comparison will be displayed in the console in JSON
format. Alternatively, the results will be saved to a . json file if the user includes the —j or ——json-file flag and
the output file’s path, e.g.:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] —-3j [path to,
—the JSON output file]

Once a user has generated a DeltaCode JSON output file, he or she can convert that JSON output to CSV format by
running a command with this structure::

python etc/scripts/json2csv.py [path to the JSON input file] [path to the CSV output,,
—~file]

See also JSON to CSV Conversion.

Overall Structure

JSON

Top-Level JSON

DeltaCode’s JSON output comprises the following six fields/keys and values at the top level:
* deltacode_notice — A string of the terms under which the DeltaCode output is provided.
* deltacode_options — A JSON object containing three key/value pairs:

— ——new — A string identifying the path to the JSON file containing the ScanCode output of the codebase
the user wants DeltaCode to treat as the ‘new’ codebase.

— ——o01d — A string identifying the path to the JSON file containing the ScanCode output of the codebase
the user wants DeltaCode to treat as the ‘old’ codebase.

— ——all-delta-types — A true or false value. - This value will be true if the command-line
input includes the —a or ——all-delta-types flag, in which case the deltas field described below
will include details for unmodified files as well as all changed files. - If the user does not include the
-aor ——all-delta-types flag, the value will be false and unmodified files will be omitted from the
DeltaCode output.

* deltacode_version — A string representing the version of DeltaCode on which the codebase comparison
was run.

e deltacode_errors — A list of one or more strings identifying errors (if any) that occurred during the
codebase-comparison process.

* deltas_count — An integer representing the number of ‘Delta’ objects — the file-level comparisons of the
two codebases (discussed in the next section) — contained in the DeltaCode output’s deltas key/value pair.

1.3. Deltacode Documentation 83

AboutCode

— If the user’s command-line input does not include the —a or ——all-delta-types flag (see the discus-
sion above of the ——all-delta-types field/key), the DeltaCode output will omit details for unmodi-
fied files and consequently the deltas_count field will not include unmodified files.

e deltas — A list of ‘Delta’ objects, each of which represents a file-level comparison (i.e., the “delta”) of the
‘new’ and ‘old’ codebases. The Delta object is discussed in further detail in the next section.

This is the top-level JSON structure of the key/value pairs described above:

{
"deltacode_notice": "",
"deltacode_options": {
"77new" . nn ,
Vliioldll: "Yl,
"--all-delta-types": false
b

"deltacode_version": "",
"deltacode_errors": [],
"deltas_count": O,
"deltas": [one or more Delta objects]
}
The Delta Object

Each Delta object consists of four key/value pairs:

* factors: A list of one or more strings representing the factors that characterize the file-level comparison and
are used to calculate the resulting score, e.g.

"factors": [
"added",
"license info added",
"copyright info added"

1s

The possible values for the factors field are discussed in some detail in DeltaCode Scoring Deltacode Scoring.

* score: An integer representing the magnitude/importance of the file-level change — the higher the score, the
greater the change. For further details about the DeltaCode scoring system, see DeltaCode Scoring Deltacode
Scoring.

* new: A ‘File’ object containing key/value pairs of certain ScanCode-based file attributes (path, licenses,
copyrights etc.) for the file in the codebase designated by the user as new. If the Delta object represents the
removal of a file (the factors value would be removed), the value of new will be null.

* 0ld: A °File’ object containing key/value pairs of certain ScanCode-based file attributes for the file in the
codebase designated by the user as o1d. If the Delta object represents the addition of a file (the factors value
would be added), the value of o1d will be null.

The JSON structure of a Delta object looks like this::

{

"factors": [1,

"score": O,

"new": {
llpath": "ll,
"type" : nmnn
"name n : nmnn ,
"size": O,
"Shal": "",

(continues on next page)

84 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

wn

"original_path":
"licenses": [],
"copyrights": []

}I

"old": {
"path": "",
"type": "M,
"name": "",
"size": O,
"shal": "",
"original_path": "",
"licenses": [],
"copyrights": []

The File Object

As you saw in the preceding section, the File object has the following JSON structure::

{

"path": Hll,

"type“: H"’

llname n . nn ,

"size": O,

"Shal“: H"’
"original_path": "",
"licenses": [1,
"copyrights": []

A File object consists of eight key/value pairs:

e path: — A string identifying the path to the file in question. In processing the ‘new’ and ‘old’ codebases to be
compared, DeltaCode may modify the codebases’ respective file paths in order to properly align them for com-
parison purposes. As a result, a File object’s path value may differ to some extent from its original_path
value (see below).

* type: — A string indicating whether the objectisa file oradirectory.
e name: — A string reflecting the name of the file.

* size: — An integer reflecting the size of the file in KB.

* shal: — A string reflecting the file’s shal value.

e original_path: — A string identifying the file’s path as it exists in the codebase, prior to any processing by
DeltaCode to modify the path for purposes of comparing the two codebases.

* licenses: — A list of License objects reflecting all licenses identified by ScanCode as associated with the file.
This list can be empty.

* copyrights: — A list of Copyright objects reflecting all copyrights identified by ScanCode as associated with
the file. This list can be empty.

Example of Detailed JSON output

Here is an example of the detailed DeltaCode output in JSON format displaying one Delta object in the deltas
key/value pair — in this case, an excerpt from the JSON output of a DeltaCode comparison of z1ib-1.2.11 and
zlib-1.2.9:

1.3. Deltacode Documentation 85

AboutCode

"deltacode_notice": "Generated with DeltaCode and provided on an \"AS IS\" BASIS,
—WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No,
—content created from\nDeltaCode should be considered or used as legal advice.
—Consult an Attorney\nfor any legal advice.\nDeltaCode is a free software codebase-
—comparison tool from nexB Inc. and others.\nVisit https://github.com/nexB/deltacode/
— for support and download.",

"deltacode_options": {

"——new": "C:/scans/zlib-1.2.11.7json",
"--0ld": "C:/scans/zlib-1.2.9.json",
"-—all-delta-types": false

by

"deltacode_version": "1.0.0.post49.e3ff7be",

"deltacode_errors": [1],

"deltas_count": 40,

"deltas": [

{
"factors": [
"modified"
]I
"score": 20,
"new": {
"path": "trees.c",
"type": "file",
"name": "trees.c",
"size": 43761,
"shal": "ab030a33e399e7284b9ddf9%ba64d0dd2730b417",
"original_path": "zlib-1.2.11/trees.c",
"licenses": [
{
"key": "zlib",
"score": 60.0,
"short_name": "ZLIB License",
"category": "Permissive",
"owner": "zlib"
}
JI
"copyrights": [
{
"statements": [
"Copyright (c) 1995-2017 Jean-loup Gailly"
]I
"holders": [
"Jean—-loup Gailly"

]
b

"old": {
"path": "trees.c",
"type": "file",
"name": "trees.c",
"size": 43774,
"shal": "labb4d4edfaecfd377c71b345adb647d15££7221",
"original_path": "zlib-1.2.9/trees.c",
"licenses": [
{

(continues on next page)

86 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

"key": "zlib",
"score": 60.0,
"short_name": "ZLIB License",
"category": "Permissive",
"owner": "zlib"
}
J 14
"copyrights": [
{
"statements": [

"Copyright (c) 1995-2016 Jean—-loup Gailly"
I
"holders": [

"Jean—loup Gailly"

}
by
[additional Delta objects if any]

csv

Compared with DeltaCode’s JSON output, the CSV output is relatively simple, comprising the following seven fields
as column headers, with each row representing one Delta object:

Score — An integer representing the magnitude/importance of the file-level change.

Factors —One or more strings — with no comma or other separators — representing the factors that characterize
the file-level comparison and are used to calculate the resulting score.

Path — A string identifying the file’s path in the ‘new’ codebase unless the Delta object reflects a removed
file, in which case the string identifies the file’s path in the ‘old’ codebase. As noted above, this path may
vary to some extent from the file’s actual path in its codebase as a result of DeltaCode processing for codebase
comparison purposes.

Name — A string reflecting the file’s name in the ‘new’ codebase unless the Delta object reflects a removed
file, in which case the string reflects the file’s name in the ‘old’ codebase.

Type — A string reflecting the file’s type (‘file’ or ‘directory’) in the ‘new’ codebase unless the Delta object
reflects a removed file, in which case the string reflects the file’s type in the ‘old’ codebase.

Size — An integer reflecting the file’s size in KB in the ‘new’ codebase unless the Delta object reflects a
removed file, in which case the string reflects the file’s size in the ‘old’ codebase.

0l1d Path — A string reflecting the file’s path in the ‘old’ codebase if the Delta object reflects a moved file. If
the Delta object does not involve a moved file, this field is empty. As with the Path field/column header above,
this path may differ to some extent from the file’s actual path in its codebase due to DeltaCode processing for
codebase comparison purposes.

1.3.3 Deltacode Scoring

Delta Objects

1.3.

Deltacode Documentation 87

AboutCode

A File-Level Comparison of Two Codebases

A Delta object represents the file-level comparison (i.e., the “delta”) of two codebases, typically two versions of the
same codebase, using ScanCode-generated JSON output files as input for the comparison process.

Based on how the user constructs the command-line input, DeltaCode’s naming convention treats one codebase as the
“new” codebase and the other as the “old” codebase::

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] [...]

Basic Scoring

A DeltaCode codebase comparison produces a collection of file-level Delta objects. Depending on the nature of
the file-level change between the two codebases, each Delta object is characterized as belonging to one of the cat-
egories listed below. Each category has an associated score intended to convey its potential importance — from a
license/copyright compliance perspective — to a user’s analysis of the changes between the new and o1d codebases.

In descending order of importance, the categories are:
1. added: A file has been added to the new codebase.

2. modified: The file is contained in both the new and o1d codebase and has been modified (as reflected,
among other things, by a change in the file’s shal attribute).

3. moved: The file is contained in both the new and o1d codebase and has been moved but not modified.
4. removed: A file has been removed from the o1d codebase.
5. unmodified: The file is contained in both the new and o1d codebase and has not been modified or moved.

The score of a Delta object characterized as added or modi f ied may be increased based on the detection of license-
and/or copyright-related changes. See License Additions and Changes and Copyright Holder Additions and Changes
below.

Delta Object Fields and Values

Each Delta object includes the following fields and values:

* factors: One or more strings representing the factors that characterize the file-level comparison and resulting
score, e.g., in JSON format::

"factors": [
"added",
"license info added",
"copyright info added"
]I

* score: A number representing the magnitude/importance of the file-level change — the higher the score, the
greater the change.

* new: The ScanCode-based file attributes (path, 1icenses, copyrights etc.) for the file in the codebase
designated by the user as new.

* 01d: The ScanCode-based file attributes for the file in the codebase designated by the user as o1d.

Note that an added Delta object will have a new file but no o1d file, while a removed Delta object will have an
old file but not a new file. In each case, the new and o1d keys will be present but the value for the missing file will
be null.

88 Chapter 1. Aboutcode Projects

AboutCode

License Additions and Changes

Certain file-level changes involving the license-related information in a Delta object will increase the object’s score.
* An added Delta object’s score will be increased:
— If the new file contains one or more licenses (factors will include 1icense info added).

— If the the new file contains any of the following Commercial/Copyleft license categories (factors will
include, e.g., copyleft added):

% ‘Commercial’
% ‘Copyleft’
* ‘Copyleft Limited’
* ‘Free Restricted’
* ‘Patent License’
* ‘Proprietary Free’
* A modified Delta object’s score will be increased:

— If the o1d file has at least one license and the new file has no licenses (factors will include 1icense
info removed).

— If the o1d file has no licenses and the new file has at least one license (factors will include 1icense
info added).

— If both the 01d file and new file have at least one license and the license keys are not identical (e.g., the
old file includes an mit license and an apache-2.0 license and the new file includes only an mit
license) (factors will include 1icense change).

— If any of the Commercial/Copyleft license categories listed above are found in the new file but not in the
oldfile (factors will include, e.g., proprietary free added).

Copyright Holder Additions and Changes
* An added Delta object’s score will be increased if the new file contains one or more copyright holders
(factors will include copyright info added).
* Amodified Delta object’s score will be increased:

— If the o1d file has at least one copyright holder and the new file has no copyright holders (factors
will include copyright info removed).

— If the old file has no copyright holders and the new file has at least one (actors will include
copyright info added).

— If both the 01d file and new file have at least one copyright holder and the holders are not identical
(factors will include copyright change).

Moved, Removed and Unmodified
As noted above in Basic Scoring Basic Scoring, from a license/copyright compliance perspective, the three least
significant Delta categories are moved, removed and unmodified.

In the current version of DeltaCode, each of these three categories is assigned a score of 0, with no options to increase
that score depending on the content of the Delta object.

1.3. Deltacode Documentation 89

AboutCode

However, it is possible that both moved and removed will be assigned some non-zero score in a future version.
In particular, removed could be significant from a compliance viewpoint where, for example, the removal of a file
results in the removal of a Commercial/Copyleft license obligation.

1.3.4 Development

See CONTRIBUTING.rst for details: https://github.com/nexB/deltacode/blob/develop/CONTRIBUTING.rst

Code layout and conventions

Source code isin src/. Tests are in tests/.

Each test script is named test_XXXX and while we love to use py.test as a test runner, most tests have no
dependencies on py .test, only on the unittest module (with the exception of some command line tests that
depend on pytest monkeypatching capabilities.

When source or tests need data files, we store these in a data subdirectory.

We use PEPS conventions with a relaxed line length that can be up to 90’ish characters long when needed to keep the
code clear and readable.

We store pre-built bundled native binaries in bin/ sub-directories of each src/ packages. These binaries are orga-
nized by OS and architecture. This ensure that DeltaCode works out of the box either using a checkout or a download,
without needing a compiler and toolchain to be installed.

We store bundled thirdparty components and libraries in the thirdparty directory. Python libraries are stored
as wheels, eventually pre-built if the corresponding wheel is not available in the Pypi repository. Some of these
components may be advanced builds with bug fixes or advanced patches.

We write tests, a lot of tests, thousands of tests. Several tests are data-driven and use data files as test input and
sometimes data files as test expectation (in this case using either JSON or YAML files). The tests should pass on
Linux 64 bits, Windows 32 and 64 bits and on MacOSX 10.6.8 and up. We maintain two CI loops with Travis (Linux)
at https://travis-ci.org/nexB/deltacode and Appveyor (Windows) at https://ci.appveyor.com/project/nexB/deltacode

When finding bugs or adding new features, we add tests. See existing test code for examples.

Running tests

DeltaCode comes with over 130 unit tests to ensure detection accuracy and stability across Linux, Windows and
macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the py . test script to run the whole test suite. This is installed by pytest which
is bundled with a DeltaCode checkout and installed when you run . /configure).

If you are running from a fresh git clone and you run ./configure and then source bin/activate the
py . test command will be available in your path.

Alternatively if you have already configured but are not in an activated “virtualenv” the py . test command is avail-
able under <root of your checkout>/bin/py.test

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel (and faster) For instance: py .test
—-n4 runs the tests on 4 CPUs. We typically run the tests in verbose mode with py .test -vvs -n4

See also https://docs.pytest.org for details or use the py.test —h command to show the many other options avail-
able.

920 Chapter 1. Aboutcode Projects

https://github.com/nexB/deltacode/blob/develop/CONTRIBUTING.rst
https://travis-ci.org/nexB/deltacode
https://ci.appveyor.com/project/nexB/deltacode
https://docs.pytest.org

AboutCode

One useful option is to run a select subset of the test functions matching a pattern with the —k option for instance:
py.test —-vvs -k tcpdump would only run test functions that contain the string “tcpdump” in their name or
their class name or module name .

Another useful option after a test run with some failures is to re-run only the failed tests with the ——1f option for
instance: py.test -vvs —-1f would only run only test functions that failed in the previous run.

pip requirements and the configure script

DeltaCode use the configure and configure.bat (and etc/configure.py behind the scenes) scripts to
install a virtualenv, install required packaged dependencies as pip requirements and more configure tasks such that
DeltaCode can be installed in a self-contained way with no network connectivity required.

DeltaCode requirements and third-party Python libraries

In a somewhat unconventional way, all the required libraries are bundled aka. copied in the repo itself in the thirdparty/
directory. If DeltaCode were only a library it would not make sense. But its is first an application and having a well
defined frozen set of dependent packages is important for an app. The benefit of this approach (combined with the
configure script) means that a mere checkout of the repository contains everything needed to run DeltaCode
except for a Python interpreter.

Using DeltaCode as a Python library

(Coming Soon) DeltaCode can be used alright as a Python library and is available as as a Python wheel in Pypi and
installed with pip install deltacode.

1.3.5 JSON to CSV Conversion

The default output format for a DeltaCode codebase comparison is JSON. If the —j or ——json-file option is
included in the deltacode command, the output will be written to a . json file at the user-designated location. For
example:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] -3j [path to,
—the JSON output file]

We have also created an easy-to-use script for users who want to convert their JSON output to CSV format. Located
atetc/scripts/json2csv.py, the conversion can be run with this command template:

python etc/scripts/Jjson2csv.py [path to the JSON input file] [path to the CSV output,
—~file]

1.3.6 Release Process

Steps to cut a new release:

run bumpversion with major, minor or patch to bump the version in:

src/deltacode/__init__ .py

setup.py
deltacode.ABOUT

1.3. Deltacode Documentation 91

https://virtualenv.pypa.io/en/stable/
https://github.com/pypa/pip

AboutCode

Update the CHANGELOG:.rst commit changes and push changes to develop:

git commit —m "commit message"
git push ——-set-upstream origin develop

merge develop branch in master and tag the release.

git checkout master

git merge develop

git tag -a vl.6.1 —-m "Release vl1.6.1"
git push ——-set-upstream origin master
git push --set-upstream origin vl.6.1

Draft a new release in GitHub, using the previous release blurb as a base. Highlight new and noteworthy changes from
the CHANGELOG.rst.

Run etc/release/release.sh locally.
Upload the release archives created in the dist/ directory to the GitHub release page.

Save the release as a draft. Use the previous release notes to create notes in the same style. Ensure that the link to
thirdparty source code is present.

Test the downloads.
Publish the release on GitHub

Then build and publish the released wheel on Pypi. For this you need your own Pypi credentials (and get authorized
to publish Pypi release: ask @pombredanne) and you need to have the twine package installed and configured.

Build a .whl with python setup.py bdist_wheel Run twine with twine upload dist/<path to
the built wheel> Once uploaded check the published release at https://pypi.python.org/pypi/deltacode/ Then
create a new fresh local virtualenv and test the wheel installation with: pip install deltacode

1.4 AboutCode Docs

Welcome to the AboutCode wiki!
If you are interested in the Google Summer of Code 2019, check out this page. Google Summer of Code 2019

If you are interested in the Google Season of Documents 2019, go through this page. Google Season of Docs 2019

1.4.1 Contributor Project Ideas

Welcome to AboutCode!

AboutCode is a project to uncover data ... about software code:
* where does the code come from? which software package?
e what’s is its license? copyright?
¢ is the code secure, maintained, well coded?

All these are questions that are important to find answers to: there are million of free and open source software
components available on the web.

Knowing where a software package comes from, if it is vulnerable and what’s its licensing should be a problem of the
past such that everyone can safely consume more free and open source software.

92 Chapter 1. Aboutcode Projects

https://pypi.python.org/pypi/deltacode/

AboutCode

Join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries as well as
discover software and package dependencies, and track security vulnerabilities, bugs and other important software
package attributes. This is a suite of command line tools, web-based and API servers and desktop applications.

Table of Contents

e Welcome to AboutCode!

AboutCode projects are. . .

Contact

Technology

About your project application

Our Project ideas

AboutCode data server

VulnerableCode Package security vulnerability data feed (and scanner)
Integrate the license expression library in ScanCode (Python) and AboutCode Manager (JavaScript)
High volume matching automatons and data structures

ScanCode scan deduction

License and copyright detection benchmark

Improved copyright parsing and speed in ScanCode

Transparent archive extraction in ScanCode

Port ScanCode to Python 3

Automated Docker, containers and VM images static package analysis
Static analysis of binaries for build tracing in TraceCode

Create Linux distro packages for ScanCode

Package URL implementations in many programming languages

DependentCode: a mostly universal Package dependencies resolver

AboutCode projects are...

ScanCode Toolkit a popular command line tool to scan code for licenses, copyrights and packages, used by
many organizations and FOSS projects, small and large.

AboutCode Manager a JavaScript, Electron-based desktop application to review scan results and document
your conclusions

AboutCode Toolkit a set of command line tools to document and inventory known packages and licenses and
generate attribution docs

TraceCode Toolkit: a set of command line tools to find which source code is used to create a compiled binary

DeltaCode Toolkit: a new command line tool to compare codebases based on scan and determine if and where
there are material differences that affect licensing

VulnerableCode Server: a new server-side application to track package vulnerabilities

1.4. AboutCode Docs 93

AboutCode

AboutCode Server: a new server-side application to run and organize scans and ABC data (formerly ScanCode
server)

* ConAn: a command line tool to analyze the code in Docker and container images
* license-expression: a library to parse and render boolean license expression (such as SPDX)
 Other new tools for source and binary code matching/search and package inventories.

We also work closely with other orgs and projects:

 purl aka. Package URLs https://github.com/package-url which is an emerging standard to reference software
packages of all types.

* SPDX.org aka. Software Package Data Exchange, a spec to document the origin and licensing of packages

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss introduce yourself and start the discussion!
For personal issues, you can contact the primary org admin directly: @pombredanne and pombredanne @ gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology

Discovering the origin of code is a vast topic. We primarily use Python for this and some C/C++ (and eventually
Rust) for performance sensitive code and Electron/JavaScript for GUI. We are open to using any other language within
reason.

Our domain includes text analysis and processing (for instance for copyrights and licenses), parsing (for package
manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come from, etc)
as well as web based tools and APIs (to expose the tools and libraries as web services) and low-level data structures
for efficient matching (such as Aho- Corasick and other automata)

About your project application

We expect your application to be in the range of 1000 words. Anything less than that will probably not contain enough
information for us to determine whether you are the right person for the job. Your proposal should contain at least the
following information, plus anything you think is relevant:

* Your name

* Title of your proposal

* Abstract of your proposal

* Detailed description of your idea including explanation on why is it innovative and what it will contribute
* hint: explain your data structures and the main processing flows in details.

* Description of previous work, existing solutions (links to prototypes, bibliography are more than welcome)
* Mention the details of your academic studies, any previous work, internships

* Relevant skills that will help you to achieve the goal (programming languages, frameworks)?

* Any previous open-source projects (or even previous GSoC) you have contributed to and links.

94 Chapter 1. Aboutcode Projects

https://github.com/package-url
https://gitter.im/aboutcode-org/discuss
mailto:pombredanne@gmail.com
http://www.catb.org/~esr/faqs/smart-questions.html

AboutCode

* Do you plan to have any other commitments during GSoC that may affect your work? Any vacations/holidays?
Will you be available full time to work on your project? (Hint: do not bother applying if this is not a serious full
time commitment)

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss introduce yourself and start the discussion!

You need to understand something about open source licensing or package managers or code and binaries static
analysis or low level data structures. The best way to demonstrate your capability would be to submit a small patch
ahead of the project selection for an existing issue or a new issue.

We will always consider and prefer a project submissions where you have submitted a patch over any otherr submission
without a patch.

Our Project ideas
Here is a list of candidate project ideas for your consideration. Your own ideas are welcomed too! Please chat about
them to increase your chances of success!

Note that there is NO specific order in this list!

AboutCode data server

This project is to futher and evolve the ScanCode server (was started last year as a 2017 GSoC project) and rename it
as the AboutCode server.

The features of this updated server would be:
* Store any ABC data including ScanCode scans See AboutCode Data : ABCD
* Organize the data in projects (including possibly user-private projects)
* Execute selectively AboutCode tools such as ScanCode-toolkit, AboutCode-toolkit, etc.

* Integrate the storage and retrieval of scans and ABC data with the AboutCode Manager app through the JSON
APIL.

* Add a Github integration to scan/run an ABC tool on commit with webhooks.

— Bonus feature is to scan based on a received tweet of similar IRC or IM integration.
* Tech

— Python 2, Django, PostgreSQL, DREF, JavaScript, Electron
« URLS

https://github.com/nexB/scancode-server

https://github.com/nexB/aboutcode-manager

https://github.com/nexB/aboutcode-toolkit

https://github.com/nexB/scancode-toolkit
* Mentors

— @majurg https://github.com/majurg

— @tdruez https://github.com/tdruez

1.4. AboutCode Docs 95

https://gitter.im/aboutcode-org/discuss
https://github.com/nexB/scancode-server
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/scancode-toolkit
https://github.com/majurg
https://github.com/tdruez

AboutCode

VulnerableCode Package security vulnerability data feed (and scanner)

This project is to futher and evolve the VulnerableCode server and and software package vulnerabilities data aggrega-

tor.

VulnerableCode was started last year as a 2017 GSoC project. Its goal is to collect and aggregate vulnerabilities data
and provide semi-automatic correlation. In the end it should provide the basis to report vulnerabilities alerts found in
packages identified by ScanCode.

This is not trivial as there are several gaps in the CVE data and how they relate to packages as they are detected by
ScanCode or else.

The features and TODO for this updated server would be:

Aggregate more and new packages vulnerabilities feeds,

Automating correlation: add smart relationship detection to infer new relatiosnhips between available packages
and vulnerabilities from mining the graph of existing relations.

Create a ScanCode plugin to report vulnerabilities with detected packages using this data.

Integrate API lookup on the server withe the AboutCode Manager Ul

Create a UI and model for community curation of vulnerability to package mappings, correlations and enhance-

ments.

Tech

— Python 2, Django, PostgreSQL, DREF, JavaScript, Electron

URLS

k
*

%

k
*
*

Mentors

https://github.com/nexB/vulnerablecode
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/scancode-toolkit

Other interesting pointers:

https://github.com/cve-search/cve-search
https://github.com/jeremylong/DependencyCheck/
https://github.com/victims/victims-cve-db
https://github.com/rubysec/ruby-advisory-db
https://github.com/future-architect/vuls
https://github.com/coreos/clair
https://github.com/anchore/anchore/
https://github.com/pyupio/safety-db
https://github.com/RetireJS/retire.js

and many more including Linux distro feeds

— @majurg https://github.com/majurg

— @JonoYang https://github.com/JonoYang

— @pombredanne https://github.com/pombredanne

96

Chapter 1

. Aboutcode Projects

https://github.com/nexB/vulnerablecode
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/scancode-toolkit
https://github.com/cve-search/cve-search
https://github.com/jeremylong/DependencyCheck/
https://github.com/victims/victims-cve-db
https://github.com/rubysec/ruby-advisory-db
https://github.com/future-architect/vuls
https://github.com/coreos/clair
https://github.com/anchore/anchore/
https://github.com/pyupio/safety-db
https://github.com/RetireJS/retire.js
https://github.com/majurg
https://github.com/JonoYang
https://github.com/pombredanne

AboutCode

Integrate the license expression library in ScanCode (Python) and AboutCode Manager (JavaScript)

In GSoC 2017, this Python library was ported to JavaScript using Transcrypt.

The goal of this project is to add support for license expressions in multiple projects and evolve the license expression
library as needed:

* in Python:
— the SPDX Python library

— the ScanCode toolkit. This also include the proper detection of license expressions in SPDX-License-
Identifier tags.

— the AboutCode toolkit
* in JavaScript:
— the AboutCode Manager

* in both languages in the core license expression proper, add support for a built-in mode for strict SPDX expres-
sions

¢ Tech
— Python, JavaScript
« URLS

https://github.com/nexB/license-expression

https://github.com/bastikr/boolean.py

https://github.com/nexB/aboutcode-manager

https://github.com/nexB/aboutcode-toolkit

https://github.com/nexB/scancode-toolkit

https://github.com/spdx/tools-python

* Mentors
— @JonoYang https://github.com/JonoYang
— @majurg https://github.com/majurg

High volume matching automatons and data structures

MatchCode will provide ways to efficiently match actual code against a large stored indexes of open source code.

To enable this, we need to research and create efficient and compact data structures that are specialized for the type of
data we lookup. Given the volume to consider (typically multi billion values indexed) there are special considerations
to have compact and memory efficient dedicated structures (rather than using a general purpose DB or Key/value pair
store) that includes looking at automata, and memory mapping. This types of data structures should be implemented
in Rust as a preference (though C/C++ is OK) and include Python bindings.

There are several areas to research and implement:

* A data structure to match efficiently a batch of fix-width checksums (e.g. SHA1) against a large index of such
checksums, where each checksum points to one or more files or packages. A possible direction is to use finite
state transducers or specialized B-tree indexes. Since when a codebase is being matched there can be millions
of lokkups to do, the batch matching is preferred.

1.4. AboutCode Docs 97

https://github.com/nexB/license-expression
https://github.com/bastikr/boolean.py
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/scancode-toolkit
https://github.com/spdx/tools-python
https://github.com/JonoYang
https://github.com/majurg

AboutCode

* A data structure to match efficiently a batch of fix-width byte strings (e.g. LSH) against a large index of such
LSH within a fixed hamming distance, where each points to one or more files or packages. A possible direction
is to use finite state transducers (possibly weighted), specialized B-tree indexes or multiple hash-like on-disk
tables.

* A memory-mapped Aho-Corasick automaton to build large batch tree matchers. Available Aho-Corasick au-
tomaton may not have a Python binding or may not allow memory-mapping (like pyahocorasick we use in
ScanCode). The volume of files we want to handle requires to reuse, extend or create aspecialized tree/paths
matching automatons that can handle eventually billions of nodes and are larger than the available RAM. A
possible direction is to use finite state transducers (possibly weighted).

* Feature hashing research: we deal with manyt “features” and hashing to limit the number and size of the each
features seems to be a valuable thing. The goal is to research feature hashing with short hashes (15, 16 and
32 bits) and evaluate if this leads to acceptable fasle-positive and loss of accuracy in the context of the data
structures mentioned above.

Then using these data structures, the project should create a system for matching code as a Python-based server
exposing a simple API. This is a green field project.

e Tech
— Rust, Python

« URLS
— https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.
— https://github.com/nexB/scancode-toolkit for commoncode hashes

* Mentors

— @pombredanne https://github.com/pombredanne

ScanCode scan deduction

The goal of this project is to take existing scan and match results and infer summaries and deduction at a higher level,
such as the licensing or origin of a whole directory tree. This should be implemented as a set of ScanCode plugins

* Tech
— Python
* URLS
— https://github.com/nexB/scancode-toolkit/issues/426
— https://github.com/nexB/scancode-toolkit/issues/377
* Mentors
— @pombredanne https://github.com/pombredanne

— @JonoYang https://github.com/JonoYang

License and copyright detection benchmark

Compare ScanCode runtimes with Fossology, licensee, LicenseFinder, license- check, ninka, slic, LiD and others. This
project is to create a comprehensive test suite and a benchmark for several FOSS open source license and copyright
detection engines, establish mappings between the different conventions they use for license identification and evaluate
and publish the results of detection accuracy and precision.

98 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit-contrib
https://github.com/nexB/scancode-toolkit
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/issues/426
https://github.com/nexB/scancode-toolkit/issues/377
https://github.com/pombredanne
https://github.com/JonoYang

AboutCode

Note that this not only about the speed of scanning: the performance and time taken is accessory and a nice to have as
a result. What matters is benchmarking the accuracy of the license detection:

1. is the right license detected and how correct is this detection?
2. when a license is detected is the correct exact text matched and returned?
So what is needed is a (large) test set of files.

Then establishing a ground truth for reference e.g. detecting then reviewing manually possibly with ScanCode to set
up the baseline that will be used to compare all the scanners.

Then run the other tools and ScaCode to see how well they perform and of course establish a mapping of license
identifiers: each tool may use different license ids so we need to map these to the ids used in the test baseline (e.g. the
scancode license keys): all this has to be built, possibly reusing some or all of the scancode tests and lacing in all the
tests from the other tools and adding more as needed.

e Tech
— Python
* Mentors
— @mjherzog https://github.com/mjherzog

— @pombredanne https://github.com/pombredanne

Improved copyright parsing and speed in ScanCode

Copyright detection is the slowest scanner in ScanCode. It is based on NLTK part of speech tagging and a copyright
grammar.

The goal of this project is to refactor Copyright detection for speed and simplicity possibly implementaing a new
parser (PEG?, etc) or reimplementing core elements in Rust with a Python binding.

This would include also keeping track of line numbers and offsets where copyrights are found.
This would likely require either replacing or enhancing NLTK which is used as a natural language parser.
* Tech
— Python, Rust
* URLS
— https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
* Mentor

— @JonoYang https://github.com/JonoYang

Transparent archive extraction in ScanCode

ScanCode archive extraction is currently done with a separate command line invocation. The goal of this project
is to integrate archive extraction transparently into the ScanCode scan loop. This would be using the new plugins
architecture.

e Tech
— Python
* URLS

1.4. AboutCode Docs 99

https://github.com/mjherzog
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
https://github.com/JonoYang

AboutCode

— https://github.com/nexB/scancode-toolkit/issues/14
* Mentor

— @pombredanne https://github.com/pombredanne

Port ScanCode to Python 3

ScanCode runs only on Python 2.7 today. The goal of this project is to port ScanCode to support both Python 2 and
Python 3.

* Tech

— Python
* URLS

— https://github.com/nexB/scancode- toolkit/issues/295
* Mentor

— @pombredanne https://github.com/pombredanne

Automated Docker, containers and VM images static package analysis

The goal of this project is to further the Conan container static analysis tool to effectively support proper inventory of
installed packages without running the containers.

This includes determining which packages are installed in Docker layers for RPMs, Debian or Alpine Linux. And this
woudl eventually require the integration of ScanCode.

e Tech
— Python, Go?
* URLS
— https://github.com/pombredanne/conan
— https://github.com/nexB/scancode-toolkit
* Mentor

— @pombredanne https://github.com/pombredanne

Static analysis of binaries for build tracing in TraceCode

TraceCode does system call tracing only today.

» The primary goal of this project is to do the same using symbol, debug symbol or string matching to accomplish
something similar using static analysis.

* This project also would cover updating TraceCode to use the Click comamnd line toolkit (like for ScanCode).

* Finally thsi project should improve the tracing of the lifecycle of file descriptors in TraceCode build. We need
to improve how TraceCode does system call tracing by improving the way we track open/close file descriptors
in the trace to reconstruct the lifecycle of a traced file.

¢ Tech

— Python, Linux

100 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/issues/14
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/issues/295
https://github.com/pombredanne
https://github.com/pombredanne/conan
https://github.com/nexB/scancode-toolkit
https://github.com/pombredanne

AboutCode

* URLS
— https://github.com/nexB/tracecode-toolkit for the existing non-static tool

— https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols
parsers/extractors

¢ Mentor

— @pombredanne https://github.com/pombredanne

Create Linux distro packages for ScanCode

The goal of this project is to ensure that we have proper packages for Linux distros for ScanCode.

The first step is to debundle pre-built binaries that exist in ScanCode such that they come either from system-packages
or pre-built Python wheels. This covers libarchive, libmagic and a few other native libraries.

The next step is to ensure that all the dependencies from ScanCode are also available as distro packages.

The last step is to create proper distro packages for RPM, Debian, Nix and GUIX, Alpine, Arch and Gentoo and also
an Applmage.org package as well as a proper Docker image and eventually submit these package to the distros.

As a bonus, the same could then be done for AboutCode toolkit and TraceCode.
This requires a good understanding of packaging and Python.
* Tech
— Python, Linux
* URLS
— https://github.com/nexB/scancode-toolkit/issues/487
— https://github.com/nexB/scancode-toolkit/issues/469
* Mentor

— @pombredanne https://github.com/pombredanne

Package URL implementations in many programming languages

We have a purl implmentation in Python, Go and possibly Java today.
The goal of this project is to create multiple parsers and builders in several programming languages:
* JavaScript, Rust, R, Perl, Ruby, C/C++, Racket, etc.
e Tech
— Many!
« URLS
— https://github.com/package-url
— https://fosdem.org/2018/schedule/event/purl/
* Mentors

— @pombredanne https://github.com/pombredanne

1.4. AboutCode Docs 101

https://github.com/nexB/tracecode-toolkit
https://github.com/nexB/scancode-toolkit-contrib
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/issues/487
https://github.com/nexB/scancode-toolkit/issues/469
https://github.com/pombredanne
https://github.com/package-url
https://fosdem.org/2018/schedule/event/purl/
https://github.com/pombredanne

AboutCode

DependentCode: a mostly universal Package dependencies resolver

The goal of this project is to create a tool for mostly universal package dependencies resolution using a SAT solver
that should leverage the detected packages from ScanCode and the Package URLs and could provide a good enough
way to resolve package dependencies for many system and application package formats. This is a green field project.

* Tech

— Python, C/C++, Rust, SAT
* URLS

— https://github.com/package-url

— https://fosdem.org/2018/schedule/event/purl/
* Mentors

— @pombredanne https://github.com/pombredanne

1.4.2 Google Season of Docs 2019

AboutCode has been accepted as a participant in the Google Season of Documents in 2019 as a mentoring org, and is
looking for people with technical writing skills. This page contains information for technical writers and anyone else
interested in helping.

AboutCode is a family of FOSS projects to uncover data about software code:
* Where does the code come from? which software package?
e What is its license? copyright?
¢ s the code secure, maintained, well coded?

All these questions are important, and are relevant to millions of free and open source software components available
on the web for reuse. The answers are critical to ensure that everyone can safely consume free and open source
software.

Join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries as well
as to discover software and package dependencies, and in the future track security vulnerabilities, bugs and other
important software package attributes. This is a suite of command line tools, web-based and API servers and desktop
applications.

Table of Contents

e List of AboutCode projects

* Contact

e Technology

* Technical Writing Skills Needed

e About your project application

* Our Documentation Project ideas
* Tutorial ideas

— Scan a Codebase and Analyze the Results

102 Chapter 1. Aboutcode Projects

https://github.com/package-url
https://fosdem.org/2018/schedule/event/purl/
https://github.com/pombredanne

AboutCode

* How-To ideas
— How To Get the License Clarity Score of a Package
— How To Discover Licensing Issues in a Software Project
* Reference ideas
— ScanCode Output Formats
* Discussion ideas
— Integrating ScanCode into a Software Development Lifecycle
* Your Documentation Project ideas

* Mentoring

List of AboutCode projects
Note that the AboutCode focus for GSOD 2019 is on ScanCode Toolkit and ScanCode Workbench, although pro-
posals to improve the documents of other AboutCode projects are welcome.

» ScanCode Toolkit is a popular command line tool to scan code for licenses, copyrights and packages, used by
many organizations and FOSS projects, small and large.

e Scancode Workbench (formerly AboutCode Manager) is a JavaScript, Electron-based desktop application to
review scan results and document your origin and license conclusions.

» Other AboutCode projects are described at https://www.aboutcode.org and https://github.com/nexB/aboutcode
We also work closely with, contribute to and have co-started several other orgs and projects:

» Package URL is an emerging standard to reference software packages of all types with simple, readable and
concise URLs.

» SPDX is the Software Package Data Exchange, a specification to document the origin and licensing of software
packages.

¢ ClearlyDefined is a project to review FOSS software and help FOSS projects to improve their licensing and
documentation clarity.

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss Introduce yourself and start the discussion!
For personal issues, you can contact the primary org admin directly: @pombredanne and pombredanne @ gmail.com
or the GSOD coordinator directly at dmclark @nexb.com

Please ask questions the smart way: http://www.catb.org/~esr/fags/smart-questions.html

Technology

We primarily use Python (and some C/C++) for code analysis. We use Electron/JavaScript for GUL

Our domain includes text analysis and processing (for instance for copyright and license detection), parsing (for
package manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come
from, etc.) as well as web based tools and APIs (to expose the tools and libraries as web services) and low-level data
structures for efficient matching (such as Aho-Corasick and other automata).

1.4. AboutCode Docs 103

https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-workbench
https://www.aboutcode.org
https://github.com/nexB/aboutcode
https://github.com/package-url
http://SPDX.org
ClearlyDefined.io
https://gitter.im/aboutcode-org/discuss
mailto:pombredanne@gmail.com
mailto:dmclark@nexb.com
http://www.catb.org/~esr/faqs/smart-questions.html

AboutCode

Our documentation is provided in text files that support the help function of our command line tools. We also have
begun to provide documentation in the Wiki section of some AboutCode projects.

Technical Writing Skills Needed

Incoming technical writers will need the following skills:
* Ability to install and configure open source code from GitHub.
* Ability to understand and run programs from the command line in a terminal window.
 Familiarity with the four document functions described at https://www.divio.com/blog/documentation/
* Ability to create and edit wiki pages with multiple markdown languages.
* An interest in FOSS licensing and software code and origin analysis.

We are happy to help you get up to speed, and the more you are able to demonstrate ability and skills in advance, the
more likely we are to choose your application!

About your project application
Your application should be in the range of 1000 words, and should contain the following information, plus anything
else that you think is relevant:

* Your name and contact details

* Title of your proposal

* Abstract of your proposal

* Description of your idea including an explanation of what it will contribute to the project, such as the software
development life cycle requirements that you expect to help with the documentation improvements.

* Description of previous work, existing solutions, open-source projects, preferably with links.
* Details of your academic studies and any previous internships.
* Descriptions of your relevant skills.

* Do you plan to have any other commitments during GSOD that may affect your work? Any vacations/holidays?
Will you be available full time to work on your project? Please apply only if this is a serious full time commit-
ment during the GSOD time frame.

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss Introduce yourself and start the discussion!

An excellent, competitive way to demonstrate your capability would be to submit a documentation improvement to an
AboutCode project, especially to ScanCode Toolkit or ScanCode Workbench.

You can pick any project idea from the list below. You can also submit Your Documentation Project ideas.

Our Documentation Project ideas
Here is a list of candidate project ideas for your consideration, organized by documentation function: Tutorial ,
How-To , Reference , Discussion.

Note that the AboutCode focus for GSOD 2019 is on ScanCode Toolkit and ScanCode Workbench, although proposals
to improve the documents of other AboutCode projects are welcome.

Your Documentation Project ideas are welcome too! Please chat about them to increase your chances of success!

104 Chapter 1. Aboutcode Projects

https://www.divio.com/blog/documentation/
https://gitter.im/aboutcode-org/discuss

AboutCode

Tutorial ideas

Scan a Codebase and Analyze the Results

Provide specific instructions to guide a new user to:
* Scan a somewhat complex sample codebase using scancode-toolkit.
* Import the results into ScanCode Workbench.
* Analyze the scan results.
— Level
Intermediate
— Tech
% Command line processing in a Linux-compatible terminal window
- URLS
* https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
+ https://github.com/nexB/scancode-toolkit/wiki
* https://github.com/nexB/scancode-workbench/blob/develop/README.md
* https://github.com/nexB/scancode-workbench/wiki
— Mentors

* https://github.com/DennisClark

How-To ideas

How To Get the License Clarity Score of a Package

Explain the recommended scancode-toolkit options to get a license clarity score.
* Level
— Intermediate
* Tech
— Command line processing in a Linux-compatible terminal window
* URLS
https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md

https://github.com/nexB/scancode-workbench/wiki
* Mentors

— https://github.com/DennisClark

1.4. AboutCode Docs 105

https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md
https://github.com/nexB/scancode-workbench/wiki
https://github.com/DennisClark
https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md
https://github.com/nexB/scancode-workbench/wiki
https://github.com/DennisClark

AboutCode

How To Discover Licensing Issues in a Software Project

 Explain the recommended scancode-toolkit options to discover licenses.
» Explain how to take advantage of license policy support.
— Level
* Intermediate

Tech

% Command line processing in a Linux-compatible terminal window
URLS
* https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

* https://github.com/nexB/scancode-toolkit/wiki
* https://github.com/nexB/scancode-workbench/blob/develop/README.md
* https://github.com/nexB/scancode-workbench/wiki

Mentors

* https://github.com/DennisClark

Reference ideas

ScanCode Output Formats

Explain the various ScanCode output formats and their business purposes.

* Level
— Intermediate

* Tech
— Command line processing in a Linux-compatible terminal window

* URLS
— https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
— https://github.com/nexB/scancode-toolkit/wiki
— https://github.com/nexB/scancode-workbench/blob/develop/README.md
— https://github.com/nexB/scancode-workbench/wiki

* Mentors

— https://github.com/DennisClark
Discussion ideas
Integrating ScanCode into a Software Development Lifecycle

Discuss options and techniques to integrate ScanCode into a software development lifecycle workflow:

* During software creation and maintenance.

106 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md
https://github.com/nexB/scancode-workbench/wiki
https://github.com/DennisClark
https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md
https://github.com/nexB/scancode-workbench/wiki
https://github.com/DennisClark

AboutCode

* During software check-out/check-in.
* During sofware build and test.
— Level
+ Intermediate
— Tech
% Command line processing in a Linux-compatible terminal window
URLS
+ https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

https://github.com/nexB/scancode-toolkit/wiki
* https://github.com/nexB/scancode-workbench/blob/develop/README.md
* https://github.com/nexB/scancode-workbench/wiki

Mentors

* https://github.com/DennisClark

Your Documentation Project ideas

Download and install ScanCode Toolkit and ScanCode Workbench and try them out. For example, you may try
scanning an open source software package in a technology with which you are familiar. What are the documentation
weak points?

* Is it difficult to get started? A Tutorial document opportunity.
* Is it difficult to accomplish a specific objective? A How-To document opportunity.

* Are the capabilities of the tool too mysterious? Do you want to know more about what you can do with it? A
Reference document opportunity.

* Do you feel that you need to understand its concepts better in order to use it and trust it? Do you want to know
more about how the code scanning actually works? A Discussion document opportunity.

Feel free to propose and describe your own documentation ideas.

Mentoring

We welcome new mentors to help with the program. We require some understanding of the project domain to join as
a mentor. Contact the team on Gitter at https://gitter.im/aboutcode-org/discuss

1.4.3 Google Summer of Code 2017

Welcome to AboutCode! This year AboutCode is a mentoring Organization for the Google Summer of Code 2017
edition.

AboutCode is a project to uncover data ... about software code:
* where does it come from?
e what is its license? copyright?

e is it secure, maintained, well coded?

1.4. AboutCode Docs 107

https://github.com/nexB/scancode-toolkit/blob/develop/README.rst
https://github.com/nexB/scancode-toolkit/wiki
https://github.com/nexB/scancode-workbench/blob/develop/README.md
https://github.com/nexB/scancode-workbench/wiki
https://github.com/DennisClark
https://gitter.im/aboutcode-org/discuss
http://www.aboutcode.org/
http://AboutCode.org

AboutCode

All these are questions that are important to find answers to when there are million of free and open source software
components available on the web.

Where software comes from and what is its license should be a problem of the past, such that everyone can safely
consume more free and open source software. Come and join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries, as well
as discover software and package dependencies, track vulnerabilities, bugs and other important software component
attributes.

Contact
Subscribe to the mailing list at https:/lists.sourceforge.net/lists/listinfo/aboutcode-discuss and introduce yourself and
start the discussion! The mailing list is usually the better option to avoid timezone gaps.

The list archive have also plenty of interesting information. Someone may have asked your question before. Search
and browse the archives at https://sourceforge.net/p/aboutcode/mailman/aboutcode-discuss/ !

For short chats, you can also join the #aboutcode IRC channel on Freenode or the Gitter channel at https://gitter.im/
aboutcode-org/discuss

For personal issues, you can contact the org admin directly: @pombredanne and pombredanne @ gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/fags/smart-questions.html

Technology
Discovering the origin of code is a vast topic. We primarily use Python for this and some C/C++ and JavaScript, but
we are open to using any other language within reason.

Our domain includes text analysis and processing (for instance for copyrights and licenses), parsing (for package
manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come from, etc)
as well as web based tools and APIs (to expose the tools and libraries as web services).

About your project application

We expect your application to be in the range of 1000 words. Anything less than that will probably not contain enough
information for us to determine whether you are the right person for the job. Your proposal should contain at least the
following information, plus anything you think is relevant:

* Your name

* Title of your proposal

 Abstract of your proposal

* Detailed description of your idea including explanation on why is it innovative and what it will contribute
— hint: explain your data structures and the main processing flows in details.

* Description of previous work, existing solutions (links to prototypes, bibliography are more than welcome)

* Mention the details of your academic studies, any previous work, internships

* Relevant skills that will help you to achieve the goal (programming languages, frameworks)?

* Any previous open-source projects (or even previous GSoC) you have contributed to and links.

108 Chapter 1. Aboutcode Projects

https://lists.sourceforge.net/lists/listinfo/aboutcode-discuss
https://sourceforge.net/p/aboutcode/mailman/aboutcode-discuss/
https://gitter.im/aboutcode-org/discuss
https://gitter.im/aboutcode-org/discuss
mailto:pombredanne@gmail.com
http://www.catb.org/~esr/faqs/smart-questions.html

AboutCode

* Do you plan to have any other commitments during GSoC that may affect your work? Any vacations/holidays?
Will you be available full time to work on your project? (Hint: do not bother applying if this is not a serious full
time commitment)

Subscribe to the mailing list at https://lists.sourceforge.net/lists/listinfo/aboutcode-discuss or join the #aboutcode IRC
channel on Freenode and introduce yourself and start the discussion!

You need to understand something about open source licensing or package managers or code and binaries static
analysis. The best way to demonstrate your capability would be to submit a small patch ahead of the project selection
for an existing issue or a new issue.

Project ideas

ScanCode live scan server :

This project is to use ScanCode as a library in a web and REST API application that allows you to scan code on
demand by entering a URL and then store the scan results. It could also be made available as a Travis or Github
integration to scan on commit with webhooks. Bonus feature is to scan based on a received tweet of similar IRC or
IM integration.

« URLS:

— https://github.com/nexB/scancode-toolkit
* Mentors :

— @majurg https://github.com/majurg

— @tdruez https://github.com/tdruez

Package security vulnerability data feed (and scanner) :

The end goal for this project is to build on existing projects to match packages identified by ScanCode to existing
vulnerability alerts. This is not trivial as there are several gaps in the CVE data and how they relate to packages as
they are detected by ScanCode or else. This is a green field project.

The key points to tackle are:
1. create the tools to build a free and open source structured and curate security feed

* the aggregation of packages vulnerabilities feeds in a common and structured model (CVE, distro trackers,
etc),

* the aggregation of additional security data (CWE, CPE, and more) in that model,

* the correlation of the different data items, creating accurate relationships and matching of actual package
identifiers to vulnerabilities,

¢ an architecture for community curation of vulnerabilities, correlation and enhancement of the data.

2. as a side bonus, build the tools in ScanCode to match detected packages to this feed. Note there is no FOSS tool
and DB that does all of this today (only proprietary solutions such as vfeed or vulndb).

* Some Related URLS for other projects in the same realm :
— https://github.com/cve-search/cve-search
— https://github.com/jeremylong/DependencyCheck/

— https://github.com/victims/victims-cve-db

1.4. AboutCode Docs 109

https://lists.sourceforge.net/lists/listinfo/aboutcode-discuss
https://github.com/nexB/scancode-toolkit
https://github.com/majurg
https://github.com/tdruez
https://github.com/cve-search/cve-search
https://github.com/jeremylong/DependencyCheck/
https://github.com/victims/victims-cve-db

AboutCode

https://github.com/rubysec/ruby-advisory-db

https://github.com/future-architect/vuls

https://github.com/coreos/clair

https://github.com/anchore/anchore/

https://github.com/pyupio/safety-db

https://github.com/RetireJS/retire.js
— and many more including Linux distro feeds
* Mentors :
— @majurg https://github.com/majurg
— @JonoYang https://github.com/JonoYang
— @pombredanne https://github.com/pombredanne

Port the Python license expression library to JavaScript and prepare and publish an NPM package :

Use automated code translation (for JS) for the port. Add license expression support to AboutCodeMgr with this
library. As a bonus, create a web server app and API service to parse and normalize ScanCode and SPDX license
expressions either in Python or JavaScript.

e URLS:

https://github.com/nexB/license-expression

https://github.com/bastikr/boolean.py

https://github.com/nexB/aboutcode-manager

https://github.com/jashkenas/coffeescript/wiki/list-of-languages- that-compile-to-js

* Mentors :
— @JonoYang https://github.com/JonoYang
— @majurg https://github.com/majurg

MatchCode :

Create a system for matching code using checksums and fingerprints against a repository of checksums and finger-
prints. Create a basic repository for storing these fingerprints and expose a basic API. Create a client that can collect
fingerprints on code and get matches using API calls to this repository or package manager APIs (Maven, Pypi, etc),
or search engines APIs such as searchcode.com, debsources, or Github or Bitbucket commit hash searches/API or the
SoftwareHeritage.org API.

« URLS:
— https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.
— https://github.com/nexB/scancode-toolkit for commoncode hashes

* Mentors :

— @pombredanne https://github.com/pombredanne

110 Chapter 1. Aboutcode Projects

https://github.com/rubysec/ruby-advisory-db
https://github.com/future-architect/vuls
https://github.com/coreos/clair
https://github.com/anchore/anchore/
https://github.com/pyupio/safety-db
https://github.com/RetireJS/retire.js
https://github.com/majurg
https://github.com/JonoYang
https://github.com/pombredanne
https://github.com/nexB/license-expression
https://github.com/bastikr/boolean.py
https://github.com/nexB/aboutcode-manager
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/JonoYang
https://github.com/majurg
https://github.com/nexB/scancode-toolkit-contrib
https://github.com/nexB/scancode-toolkit
https://github.com/pombredanne

AboutCode

ScanCode scan deduction :

The goal of this project is to take existing scan and match results and infer summaries and deduction at a higher level,
such as the licensing of a whole directory tree.

* URLS:
— https://github.com/nexB/scancode-toolkit/issues/426
— https://github.com/nexB/scancode-toolkit/issues/377
* Mentors :
— @pombredanne https://github.com/pombredanne

— @JonoYang https://github.com/JonoYang

DeltaCode :

A new tool to help determine at a high level if the licensing for two codebases or versions of code has changed, and if
so how. This is NOT a generic diff tool that identifies all codebase differences, rather it focuses on changes in licensing
based on differences between ScanCode files.

e Mentor :

— @majurg https://github.com/majurg

License and copyright detection benchmark :

Compare ScanCode runtimes with Fossology, licensee, LicenseFinder, license-check, ninka, slic, LiD and others. This
project is to create a comprehensive test suite and a benchmark for several FOSS open source license and copyright
detection engines, establish mappings between the different conventions they use for license identification and evaluate
and publish the results of detection accuracy and precision.

Note that this not about the speed of scanning: the performance and time taken is accessory and a nice to have result
only. What matters is the accuracy of the license detection:

1. is the right license detected and how correct is this detection?
2. when a license is detected is the correct exact text matched and returned?
So what is needed is a (large) test set of files.

Then establishing a ground truth for reference e.g. detecting then reviewing manually possibly with scancode to set
up the baseline that will be used to compare all the scanners.

Then run the other tools and scancode to see how well they perform and of course establish a mapping of license
identifiers: each tool may use different license ids so we need to map these to the ids used in the test baseline (e.g. the
scancode license keys): all this has to be built, possibly reusing some or all of the scancode tests and lacing in all the
tests from the other tools and adding more ass needed.

* Mentors :
— @mjherzog https://github.com/mjherzog

— @pombredanne https://github.com/pombredanne

1.4. AboutCode Docs 111

https://github.com/nexB/scancode-toolkit/issues/426
https://github.com/nexB/scancode-toolkit/issues/377
https://github.com/pombredanne
https://github.com/JonoYang
https://github.com/majurg
https://github.com/mjherzog
https://github.com/pombredanne

AboutCode

Improved copyright parsing in ScanCode :

by keeping track of line numbers and offsets where copyrights are found. This would likely require either replacing
or enhancing NLTK which is used as a natural language parser to add support for tracking where a copyright has been
detected in a scanned text.

* URLS:
— https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
* Mentor :

— @JonoYang https://github.com/JonoYang

Support full JSON and ABCD formats in AttributeCode

* URLS:
— https://github.com/nexB/attributecode/issues/277
* Mentor :

— @chinyeungli https://github.com/chinyeungli

Transparent archive extraction in ScanCode :

ScanCode archive extraction is currently done with a separate command line invocation. The goal of this project is to
integrate archive extraction transparently into the ScanCode scan loop.

« URLS:
— https://github.com/nexB/scancode-toolkit/issues/14
* Mentor :

— @pombredanne https://github.com/pombredanne

Automated docker and VM images static package analysis :

to determine which packages are installed in Docker layers for RPMs, Debian or Alpine Linux. This is for the conan
Docker image analysis tool.

« URLS:
— https://github.com/pombredanne/conan
* Mentor :

— @pombredanne https://github.com/pombredanne

Plugin architecture for ScanCode :

Create ScanCode plugins for outputs to multiple formats (CSV, JSON, SPDX, Debian Copyright)
* URLS:
— https://github.com/nexB/scancode-toolkit/issues/552

— https://github.com/nexB/scancode-toolkit/issues/381

112 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
https://github.com/JonoYang
https://github.com/nexB/attributecode/issues/277
https://github.com/chinyeungli
https://github.com/nexB/scancode-toolkit/issues/14
https://github.com/pombredanne
https://github.com/pombredanne/conan
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/issues/552
https://github.com/nexB/scancode-toolkit/issues/381

AboutCode

e Mentor :

— @pombredanne https://github.com/pombredanne

Static analysis of binaries for build tracing in TraceCode :

TraceCode does system call tracing. The goal of this project is to do the same using symbol, debug symbol or string
matching to accomplish something similar,

« URLS:
— https://github.com/nexB/tracecode-build for the existing non-static tool

— https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols
parsers/extractors

¢ Mentor :

— @pombredanne https://github.com/pombredanne

Better support tracing the lifecycle of file descriptors in TraceCode build :

TraceCode does system call tracing. The goal of this project is to improve the way we track open/close file descriptors
in the trace to reconstruct the life of a file.

* URLS:
— https://github.com/nexB/tracecode-build
* Mentor :

— @pombredanne https://github.com/pombredanne

Create Debian and RPM packages for ScanCode, AttributeCode and TraceCode.

Consider also including an AppImage.org package. If you think this may not fill in a full three months project, consider
also adding some extras such as submitting the packages to Debian and Fedora.

« URLS:
— https://github.com/nexB/scancode-toolkit/issues/487
— https://github.com/nexB/scancode-toolkit/issues/469
* Mentor :

— @pombredanne https://github.com/pombredanne

AboutCode Manager test suite and Ci :

Create an extensive test suite for the Electron app and setup the CI to run unit, integration and smoke tests on Ci for
Windows, Linux and Mac.

* URLS:
— https://github.com/nexB/aboutcode-manager

¢ Mentors :

1.4. AboutCode Docs 113

https://github.com/pombredanne
https://github.com/nexB/tracecode-build
https://github.com/nexB/scancode-toolkit-contrib
https://github.com/pombredanne
https://github.com/nexB/tracecode-build
https://github.com/pombredanne
https://github.com/nexB/scancode-toolkit/issues/487
https://github.com/nexB/scancode-toolkit/issues/469
https://github.com/pombredanne
https://github.com/nexB/aboutcode-manager

AboutCode

— @jdaguil https://github.com/jdaguil

— @pombredanne https://github.com/pombredanne

DependentCode :

Create a tool for mostly universal package dependencies resolution.
« URLS:
— https://github.com/nexB/dependentcode
* Mentors :

— @pombredanne https://github.com/pombredanne

FetchCode :

Create a tool for mostly universal package and code download from VCS, web, ftp, etc.
* Mentors :

— @pombredanne https://github.com/pombredanne

1.4.4 Google Summer of Code 2018

See Contributor Project Ideas.

1.4.5 Google Summer of Code 2019

AboutCode is participating in the Google Summer of Code in 2019 as a mentoring org. This page contain all the
information for students and anyone else interested in helping.

AboutCode is a family of FOSS projects to uncover data ... about software code:
» where does the code come from? which software package?
e what is its license? copyright?
¢ is the code secure, maintained, well coded?

All these are questions that are important to answer: there are million of free and open source software components
available on the web for reuse.

Knowing where a software package comes from, what is its license and if it is vulnerable and what’s its licensing
should be a problem of the past such that everyone can safely consume more free and open source software.

Join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries as well
as discover software and package dependencies, and in the future track security vulnerabilities, bugs and other im-
portant software package attributes. This is a suite of command line tools, web-based and API servers and desktop
applications.

114 Chapter 1. Aboutcode Projects

https://github.com/jdaguil
https://github.com/pombredanne
https://github.com/nexB/dependentcode
https://github.com/pombredanne
https://github.com/pombredanne

AboutCode

Table of Contents

* AboutCode projects are. . .
* Contact
e Technology
o Skills
* About your project application
* Qur Project ideas
— Improve Copyright detection accuracy and speed in ScanCode
— Port ScanCode to Python 3
— Improve Programming language detection and classification in ScanCode
— Improve License detection accuracy and speed in ScanCode
— Improve ScanCode scan summarization and deduction
— Create Linux distros and FreeBSD packages for ScanCode.
— DeltaCode projects
— TraceCode projects
— Conan and Other projects

* Mentoring

AboutCode projects are...
» ScanCode Toolkit is a popular command line tool to scan code for licenses, copyrights and packages, used by
many organizations and FOSS projects, small and large.

e Scancode Workbench (formerly AboutCode Manager) is a JavaScript, Electron-based desktop application to
review scan results and document your origin and license conclusions.

» AboutCode Toolkit is a command line tool to document and inventory known packages and licenses and generate
attribution docs, typically using the results of analyzed and reviewed scans.

* TraceCode Toolkit is a command line tool to find which source code file is used to create a compiled binary and
trace and graph builds.

e DeltaCode is a command line tool to compare scans and determine if and where there are material differences
that affect licensing.

e ConAn : a command line tool to analyze the code in Docker and container images

* VulnerableCode : an emerging server-side application to collect and track known package vulnerabilities.

* license-expression : a library to parse, analyze, simplify and render boolean license expression (such as SPDX)
We also work closely, contribute and co-started several other orgs and projects:

e Package URL which is an emerging standard to reference software packages of all types with simple, readable
and concise URLs.

* SPDX aka. Software Package Data Exchange, a spec to document the origin and licensing of packages.

* ClearlyDefined to review and help FOSS projects improve their licensing and documentation clarity.

1.4. AboutCode Docs 115

https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-workbench
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/tracecode-toolkit
https://github.com/nexB/deltacode
https://github.com/nexB/conan
https://github.com/nexB/vulnerablecode
https://github.com/nexB/license-expression/
https://github.com/package-url
http://SPDX.org
ClearlyDefined.io

AboutCode

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss Introduce yourself and start the discussion!
For personal issues, you can contact the primary org admin directly: @pombredanne and pombredanne @ gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology
Discovering the origin of code is a vast topic. We primarily use Python for this and some C/C++ (and eventually some
Rust and Go) for performance sensitive code and Electron/JavaScript for GUI.

Our domain includes text analysis and processing (for instance for copyrights and licenses detection), parsing (for
package manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come
from, etc.) as well as web based tools and APIs (to expose the tools and libraries as web services) and low-level data
structures for efficient matching (such as Aho- Corasick and other automata).

Skills

Incoming students will need the following skills:
¢ Intermediate to strong Python programming. For some projects, strong C/C++ and/or Rust is needed too.
 Familiarity with git as a version control system
* Ability to set up your own development environment
* An interest in FOSS licensing and software code and origin analysis

We are happy to help you get up to speed, but the more you are able to demonstrate ability and skills in advance, the
more likely we are to choose your application!

About your project application

We expect your application to be in the range of 1000 words. Anything less than that will probably not contain enough
information for us to determine whether you are the right person for the job. Your proposal should contain at least the
following information, plus anything you think is relevant:

* Your name
* Title of your proposal
* Abstract of your proposal

¢ Detailed description of your idea including explanation on why is it innovative and what it will contribute to the
project

— hint: explain your data structures and you planned main processing flows in details.
* Description of previous work, existing solutions (links to prototypes, bibliography are more than welcome)
* Mention the details of your academic studies, any previous work, internships
* Relevant skills that will help you to achieve the goal (programming languages, frameworks)?
* Any previous open-source projects (or even previous GSoC) you have contributed to and links.

* Do you plan to have any other commitments during GSoC that may affect your work? Any vacations/holidays?
Will you be available full time to work on your project? (Hint: do not bother applying if this is not a serious full
time commitment during the GSoC time frame)

116 Chapter 1. Aboutcode Projects

https://gitter.im/aboutcode-org/discuss
mailto:pombredanne@gmail.com
http://www.catb.org/~esr/faqs/smart-questions.html

AboutCode

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss introduce yourself and start the discussion!

The best way to demonstrate your capability would be to submit a small patch ahead of the project selection for an
existing issue or a new issue.

We will always consider and prefer a project submissions where you have submitted a patch over any other submission
without a patch.

You can pick any project idea from the list below. If you have other ideas that are not in this list, contact the team first
to make sure it makes sense.

Our Project ideas

Here is a list of candidate project ideas for your consideration. Your own ideas are welcomed too! Please chat about
them to increase your chances of success!

ScanCode ideas
Improve Copyright detection accuracy and speed in ScanCode

Copyright detection is reasonably good by the slowest scanner in ScanCode. It is based on NLTK part of speech (PoS)
tagging and a copyright grammar. The exact start and end lines where a copyright is found are approximate.

The goal of this project is to refactor Copyright detection for speed and simplicity possibly implementing a new parser
(PEG?, etc.) or re-implementing core elements in Rust with a Python binding for speed or using a fork of NLTK or
any other tool to be faster and more accurate.

This would include also keeping track of line numbers and offsets where copyrights are found.

Also we detect copyrights that are part of a standard license text (e.g. FSF copyright in a GPL text) and we should be
able to filter these out.

* Level
— Advanced
* Tech
— Python, Rust, Go?
* URLS
— https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
* Mentors

— @JonoYang https://github.com/JonoYang

Port ScanCode to Python 3

ScanCode runs only on Python 2.7 today. The goal of this project is to port ScanCode to support both Python 2 and
Python 3.

* Level
— Intermediate to Advanced
e Tech
— Python, C/C++, Go (for native code)

1.4. AboutCode Docs 117

https://gitter.im/aboutcode-org/discuss
https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode
https://github.com/JonoYang

AboutCode

* URLS
— https://github.com/nexB/scancode-toolkit/issues/295
* Mentors

— @majurg https://github.com/majurg

Improve Programming language detection and classification in ScanCode

ScanCode programming language detection is not as accurate as it could be and this is important to get this right to
drive further automation. We also need to automatically classify each file in facets when possible.

The goal of this project is to improve the quality of programming language detection (which is using only Pygments
today and could use another tool, e.g. some Bayesian classifier like Github linguist, enry ?). And to create and
implement a flexible framework of rules to automate assigning files to facets which could use some machine learning
and classifier.

* Level
— Intermediate to Advanced
e Tech
— Python
* URLS
— https://github.com/nexB/scancode-toolkit/issues/426
— https://github.com/nexB/scancode-toolkit/issues/1012
— https://github.com/nexB/scancode-toolkit/issues/1036
* Mentors

— @pombredanne https://github.com/pombredanne

Improve License detection accuracy and speed in ScanCode

ScanCode license detection is using a sophisticated set of techniques base on automatons, inverted indexes and se-
quence matching. There are some cases where license detection accuracy could be improved (such as when scanning
long notices). Other improvements would be welcomed to ensure the proper detected license text is collected in an
improved way. Dealing with large files sometimes trigger a timeout and handling these cases would be needed too (by
breaking files in chunks). The detection speed could also be improved possibly by porting some critical code sections
to C or Rust and that would need extensive profiling.

* Level
— Advanced
* Tech
— Python, C/C++, Rust, Go
* Mentors
— @mjherzog https://github.com/mjherzog

— @pombredanne https://github.com/pombredanne

118 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit/issues/295
https://github.com/majurg
https://github.com/nexB/scancode-toolkit/issues/426
https://github.com/nexB/scancode-toolkit/issues/1012
https://github.com/nexB/scancode-toolkit/issues/1036
https://github.com/pombredanne
https://github.com/mjherzog
https://github.com/pombredanne

AboutCode

Improve ScanCode scan summarization and deduction

The goal of this project is to take existing scan results and infer summaries and perform some deduction of license and
origin at a higher level, such as the licensing or origin of a whole directory tree. The ultimate goal is to automate the
conclusion of a license and origin based on scans. This could include using statistics and machine learning techniques
such as classifiers where relevant and efficient.

This should be implemented as a set of ScanCode plugins and further the summarycode module plugins.
* Level
— Advanced
* Tech
— Python (Rust and Go welcomed too)
* URLS
— https://github.com/nexB/scancode-toolkit/issues/426
— https://github.com/nexB/scancode-toolkit/issues/377
* Mentors
— @pombredanne https://github.com/pombredanne

— @JonoYang https://github.com/JonoYang

Create Linux distros and FreeBSD packages for ScanCode.

The goal of this project is to ensure that we have proper packages for Linux distros and FreeBSD for ScanCode.

The first step is to debundle pre-built binaries that exist in ScanCode such that they come either from system-packages
or pre-built Python wheels. This covers libarchive, libmagic and a few other native libraries and has been recently
completed.

The next step is to ensure that all the dependencies from ScanCode are also available as distro packages.

The last step is to create proper distro packages for RPM, Debian, FreeBSD and as many other distros such as Nix and
GUIX, Alpine, Arch and Gentoo (and possibly also Applmage.org packages and Docker images) and submit these
package to the distros.

As a bonus, the same could then be done for AboutCode toolkit and TraceCode.
This requires a good understanding of packaging and Python.
* Level
— Intermediate to Advanced
* Tech
— Python, Linux, C/C++ for native code
* URLS
— https://github.com/nexB/scancode-toolkit/issues/487
— https://github.com/nexB/scancode-toolkit/issues/469
e Mentor

— @pombredanne https://github.com/pombredanne

1.4. AboutCode Docs 119

https://github.com/nexB/scancode-toolkit/issues/426
https://github.com/nexB/scancode-toolkit/issues/377
https://github.com/pombredanne
https://github.com/JonoYang
https://github.com/nexB/scancode-toolkit/issues/487
https://github.com/nexB/scancode-toolkit/issues/469
https://github.com/pombredanne

AboutCode

DeltaCode projects
Approximately Similar file detection in DeltaCode

DeltaCode is a tool to compare and report scan differences. When comparing files, it only uses exact comparison. The
goal of this project is to improve the usefulness of the delta by also finding files that are mostly the same (e.g. quasi
or nrea duplicates) vs. files that are completely different. Then the DeltaCode comparison core should be updated
accordingly to detect and report material changes to scans (such as new, update or removed licenses, origins and
packages) when changes are also meterial in the code files (e.g. such that small changes may be ignored)

* Level
— Intermediate to Advanced
e Tech
— Python
« URLS
— https://github.com/nexB/deltacode/
* Mentors
— @majurg https://github.com/majurg

— @johnmhoran https://github.com/johnmhoran

TraceCode projects
Static analysis of binaries for build tracing in TraceCode

TraceCode does system call tracing only today. The primary goal of this project is to create a tool that provides the
same results as the strace-based tracing but would be using using ELF symbols, DWARF debug symbols, signatures
or string matching to determine when and how a source code file is built in a binary using only a static analysis. The
primary target should be Linux executables, though the code should be designed to be extensible to Windows PE and
macOS Dylib and exes.

* Level
— Advanced
e Tech
— Python, Linux, ELFs, DWARFs, symbols, reversing
* URLS
— https://github.com/nexB/tracecode-toolkit for the existing non-static tool

— https://github.com/nexB/scancode-toolkit-contrib for some work in progress on binaries/symbols
parsers/extractors

¢ Mentor

— @pombredanne https://github.com/pombredanne

120 Chapter 1. Aboutcode Projects

https://github.com/nexB/deltacode/
https://github.com/majurg
https://github.com/johnmhoran
https://github.com/nexB/tracecode-toolkit
https://github.com/nexB/scancode-toolkit-contrib
https://github.com/pombredanne

AboutCode

Improve dynamic build tracing in TraceCode

TraceCode does system call tracing and relies on kernel-space system calls and in particular tracing file descriptors.
This project should improve the tracing of the lifecycle of file descriptors when tracing a build with strace. We need
to improve how TraceCode does system call tracing by improving the way we track open/close file descriptors in the
trace to reconstruct the lifecycle of a traced file. This requires to understand and dive if the essence of system calls and
file lifecycle from a kernel point of view and build datastructure and code to reconstruct user-space file activity from
the kernel traces along a timeline.

This project also would cover updating TraceCode to use the Click command line toolkit (like for ScanCode).
* Level
— Advanced
e Tech
— Python, Linux kernel, system calls
« URLS
— https://github.com/nexB/tracecode-toolkit for the existing non-static tool

— https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols
parsers/extractors

e Mentor

— @pombredanne https://github.com/pombredanne

Conan and Other projects
Containers and VM images static package analysis

The goal of this project is to further the Conan container static analysis tool to effectively support proper inventory of
installed packages without running the containers.

This includes determining which packages are installed in Docker layers for RPMs, Debian or Alpine Linux in a static
way. And this may eventually require the integration with ScanCode.

* Level
— Advanced
e Tech
— Python, Go, containers, distro package managers, RPM, Debian, Alpine
« URLS
— https://github.com/nexB/conan
* Mentor

— @JonoYang https://github.com/JonoYang

DependentCode: a mostly universal Package dependencies resolver

The goal of this project is to create a tool for a universal package dependencies resolution using a SAT solver that
should leverage the detected packages from ScanCode and the Package URLSs and could provide a good enough way
to resolve package dependencies for many system and application package formats. This is a green field project.

1.4. AboutCode Docs 121

https://github.com/nexB/tracecode-toolkit
https://github.com/nexB/scancode-toolkit-contrib
https://github.com/pombredanne
https://github.com/nexB/conan
https://github.com/JonoYang

AboutCode

Level
— Advanced
Tech
— Python, C/C++, Rust, SAT
URLS
— https://github.com/package-url
— https://fosdem.org/2018/schedule/event/purl/
— https://github.com/heremaps/oss-review-toolkit
Mentors

— @pombredanne https://github.com/pombredanne

VulnerableCode Package security vulnerability correlated data feed

This project is to futher and evolve the VulnerableCode server and software package vulnerabilities data aggregator.

VulnerableCode was started as a GSoC project in 2017. Its goal is to collect, aggregate and correlate vulnerabilities
data and provide semi-automatic correlation. In the end it should provide the basis to report vulnerabilities alerts found
in packages identified by ScanCode.

This is not trivial as there are several gaps in the CVE data and how they relate to packages as they are detected by
ScanCode or else.

The features and TODO for this updated server would be:

Aggregate more and new packages vulnerabilities feeds,

Automating correlation: add smart relationship detection to infer new relatiosnhips between available packages
and vulnerabilities from mining the graph of existing relations.

Create a ScanCode plugin to report vulnerabilities with detected packages using this data.
Integrate API lookup on the server withe the AboutCode Manager Ul

Create a UI and model for community curation of vulnerability to package mappings, correlations and enhance-
ments.

Level

— Advanced
Tech

— Python, Django
URLS

https://github.com/nexB/vulnerablecode

https://github.com/nexB/aboutcode-manager

https://github.com/nexB/scancode-toolkit

Other interesting pointers:
* https://github.com/cve-search/cve-search

* https://github.com/jeremylong/DependencyCheck/

122

Chapter 1. Aboutcode Projects

https://github.com/package-url
https://fosdem.org/2018/schedule/event/purl/
https://github.com/heremaps/oss-review-toolkit
https://github.com/pombredanne
https://github.com/nexB/vulnerablecode
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/scancode-toolkit
https://github.com/cve-search/cve-search
https://github.com/jeremylong/DependencyCheck/

AboutCode

* https://github.com/victims/victims-cve-db
https://github.com/rubysec/ruby-advisory-db
* https://github.com/future-architect/vuls
* https://github.com/coreos/clair
* https://github.com/anchore/anchore/
* https://github.com/pyupio/safety-db
= https://github.com/RetireJS/retire.js
% and many more including Linux distro feeds
* Mentors
— @majurg https://github.com/majurg
— @JonoYang https://github.com/JonoYang

High volume matching automatons and data structures

Finding similar code is a way to detect the origin of code against an index of open source code.

To enable this, we need to research and create efficient and compact data structures that are specialized for the type of
data we lookup. Given the volume to consider (typically multi billion values indexed) there are special considerations
to have compact and memory efficient dedicated structures (rather than using a general purpose DB or Key/value pair
store) that includes looking at automata, and memory mapping. This types of data structures should be implemented
in Rust as a preference (though C/C++ is OK) and include Python bindings.

There are several areas to research and prototype such as:

* A data structure to match efficiently a batch of fix-width checksums (e.g. SHA1) against a large index of such
checksums, where each checksum points to one or more files or packages. A possible direction is to use finite
state transducers, specialized B-tree indexes, blomm-like filters. Since when a codebase is being matched there
can be millions of lookups to do, the batch matching is preferred.

* A data structure to match efficiently a batch of fix-width byte strings (e.g. LSH) against a large index of such
LSH within a fixed hamming distance, where each points to one or more files or packages. A possible direction
is to use finite state transducers (possibly weighted), specialized B-tree indexes or multiple hash-like on-disk
tables.

* A memory-mapped Aho-Corasick automaton to build large batch tree matchers. Available Aho-Corasick au-
tomatons may not have a Python binding or may not allow memory-mapping (like pyahocorasick we use in
ScanCode). The volume of files we want to handle requires to reuse, extend or create specialized tree/paths
matching automatons that can handle eventually billions of nodes and are larger than the available memory. A
possible direction is to use finite state transducers (possibly weighted).

* Feature hashing research: we deal with many “features” and hashing to limit the number and size of the each
features seems to be a valuable thing. The goal is to research the validaty of feature hashing with short hashes
(15, 16 and 32 bits) and evaluate if this leads to acceptable false-positive and loss of accuracy in the context of
the data structures mentioned above.

Then using these data structures, the project should create a system for matching code as a Python-based server
exposing a simple API. This is a green field project.

e Level
— Advanced
e Tech

1.4. AboutCode Docs 123

https://github.com/victims/victims-cve-db
https://github.com/rubysec/ruby-advisory-db
https://github.com/future-architect/vuls
https://github.com/coreos/clair
https://github.com/anchore/anchore/
https://github.com/pyupio/safety-db
https://github.com/RetireJS/retire.js
https://github.com/majurg
https://github.com/JonoYang

AboutCode

— Rust, Python

« URLS
— https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.
— https://github.com/nexB/scancode-toolkit for commoncode hashes

* Mentors

— @pombredanne https://github.com/pombredanne

Mentoring

We welcome new mentors to help with the program and require some good unerstanding of the project codebase and
domain to join as a mentor. Contact the team on Gitter.

1.4.6 Writing good Commit Messages

What is good commit message? We want to avoid this: https://xkcd.com/1296/
Read these articles:
* by @cbeams https://chris.beams.io/posts/git-commit/

e this README from Linus Torvalds https://github.com/torvalds/subsurface-for-dirk/blob/
0f58510ce0244513521296b75281fcc32t72a931/README#L73

 from the Git book: https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
The main style points are these:
Subject:

* Add a issue number at the end of the line when available as in “#234”

* Limit the subject line to 50 characters

* Capitalize the subject line

¢ Do not end the subject line with a period

 Use the imperative mood in the subject line: you are giving orders to the codebase
Body:

* Separate subject from body with a blank line

e Wrap the body at 72 characters. Use only spaces for formatting, not tabs.

* Use the body to explain what and why vs. how

* use bullets with a * if needed

* Add a Reported-by: if needed

* End your message with a Signed-off-by: prefixed by a blank line
Other comments:

We like to suffix the subject line with an issue number. If this was a trivial change it may not have one though. If it
had one a you would use #156 as a suffix to the first line.

We like to tell why the commit is there and use an imperative style, like if you were giving an order to the codebase
with your commit:

124 Chapter 1. Aboutcode Projects

https://github.com/nexB/scancode-toolkit-contrib
https://github.com/nexB/scancode-toolkit
https://github.com/pombredanne
https://xkcd.com/1296/
https://chris.beams.io/posts/git-commit/
https://github.com/torvalds/subsurface-for-dirk/blob/0f58510ce0244513521296b75281fcc32f72a931/README#L73
https://github.com/torvalds/subsurface-for-dirk/blob/0f58510ce0244513521296b75281fcc32f72a931/README#L73
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

AboutCode

e.g rather than : Minor fix for unnecessary operations. may be Remove unnecessary
operations #123or

Remove unnecessary operations #123

x* If the ts timestamp does not exist, do not compare with old one.

You need to add a signoff to your commit. So the final message would have looked like this:

Remove unnecessary operations #123
x* If the ts timestamp does not exist, do not compare with old one.

Signed-off-by: Philippe Ombredanne <pombredanne@nexb.com>

1.5 AboutCode-Toolkit Documentation

1.5.1 AboutCode Toolkit

Build and tests status

Branch | Linux/macOS Windows

Master el 2
el Cuild passing

The AboutCode Toolkit and ABOUT files provide a simple way to document the origin, license, usage and other
important or interesting information about third-party software components that you use in your project.

You start by storing ABOUT files (a small YAML formatted text file with field/value pairs) side-by-side with each of
the third-party software components you use. Each ABOUT file documents origin and license for one software. For
more information on the ABOUT file format, visit http://www.dejacode.org There are many examples of ABOUT files
(valid or invalid) in the testdata/ directory of the whole repository.

The current version of the AboutCode Toolkit can read these ABOUT files so that you can collect and validate the
inventory of third-party components that you use.

In addition, this tool is able to generate attribution notices and identify redistributable source code used in your project
to help you comply with open source licenses conditions.

This version of the AboutCode Toolkit follows the ABOUT specification version 3.0 at: https://github.com/nexB/
aboutcode-toolkit/blob/develop/SPECIFICATION.rst

REQUIREMENTS
The AboutCode Toolkit is tested with Python 2.7 and 3.6 on Linux, Mac and Windows. You will need to install a
Python interpreter if you do not have one already installed.

On Linux and Mac, Python is typically pre-installed. To verify which version may be pre-installed, open a terminal
and type:

python —version

1.5. AboutCode-Toolkit Documentation 125

https://travis-ci.org/nexB/aboutcode-toolkit
https://ci.appveyor.com/project/nexB/aboutcode-toolkit
https://travis-ci.org/nexB/aboutcode-toolkit
https://ci.appveyor.com/project/nexB/aboutcode-toolkit
http://www.dejacode.org
https://github.com/nexB/aboutcode-toolkit/blob/develop/SPECIFICATION.rst
https://github.com/nexB/aboutcode-toolkit/blob/develop/SPECIFICATION.rst

AboutCode

On Windows or Mac, you can download the latest Python here: https://www.python.org/downloads/

Download the .msi installer for Windows or the .dmg archive for Mac. Open and run the installer using all the default
options.

INSTALLATION

Checkout or download and extract the AboutCode Toolkit from: https://github.com/nexB/aboutcode-toolkit/
To install all the needed dependencies in a virtualenv, run (on posix): source configure
or on windows: configure

REFERENCE

See https://github.com/nexB/aboutcode-toolkit/blob/master/REFERENCE.rst for reference on aboutcode-toolkit us-
age.

TESTS and DEVELOPMENT

To install all the needed development dependencies, run (on posix): source configure etc/conf/dev
or on windows: configure etc/conf/dev
To verify that everything works fine you can run the test suite with: py.test

HELP and SUPPORT

If you have a question or find a bug, enter a ticket at:
https://github.com/nexB/aboutcode-toolkit
For issues, you can use:

https://github.com/nexB/aboutcode-toolkit/issues

SOURCE CODE

The AboutCode Toolkit is available through GitHub. For the latest version visit: https://github.com/nexB/
aboutcode-toolkit

HACKING

We accept pull requests provided under the same license as this tool. You agree to the http://developercertificate.org/

LICENSE

The AboutCode Toolkit is released under the Apache 2.0 license. See (of course) the about. ABOUT file for details.

126 Chapter 1. Aboutcode Projects

https://www.python.org/downloads/
https://github.com/nexB/aboutcode-toolkit/
https://github.com/nexB/aboutcode-toolkit/blob/master/REFERENCE.rst
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/aboutcode-toolkit/issues
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/aboutcode-toolkit
http://developercertificate.org/

AboutCode

1.5.2 Reference

about

Syntax

about [OPTIONS] [COMMANDS]

Options:

—--version Show the version and exit.

—-help Show this message and exit.

Commands:

attrib LOCATION: directory, OUTPUT: output file
check LOCATION: directory

gen LOCATION: input file, OUTPUT: directory

inventory LOCATION: directory, OUTPUT: csv file

attrib

Syntax

about attrib [OPTIONS] LOCATION OUTPUT

LOCATION: Path to an ABOUT file or a directory containing ABOUT files.
OUTPUT: Path to output file to write the attribution to.

Options:

——inventory PATH Path to an inventory file.

—-mapping Use for mapping between the input keys and the ABOUT

—~field.
names - mapping.config

—-—mapping-file Use a custom mapping file with mapping between input
keys and ABOUT field names.

--template PATH Path to a custom attribution template.

—-—vartext TEXT Variable texts to the attribution template

——-verbose Show all the errors and warning.

-q, ——quiet Do not print any error/warning.

-h, —-help Show this message and exit.

Purpose

Generate an attribution file which contains the all license information from the LOCATION along with the license
text.

Assume the following:

'/home/about_files/'"+«* contains all the ABOUT files [LOCATION]
'/home/attribution/attribution.html' is the user's output path [OUTPUT]
'/home/project/component_list.csv' is the inventory that user want to be generated

1.5. AboutCode-Toolkit Documentation 127

AboutCode

S about attrib /home/about_files/ /home/attribution/attribution.html

Options

——inventory
This option allows you to define which ABOUT files should be used for attribution
—generation.
For instance,
'/home/project/component_list.csv' is the inventory that user want to be generated
$ about attrib —--inventory /home/project/component_list.csv LOCATION OUTPUT
—--mapping
See mapping.config for details
—--mapping-file
Same behavior as ~—--mapping’ but with custom mapping file
$ about attrib --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT
-—template
This option allows you to use your own template for attribution generation.
For instance, if you have a custom template located at:
/home/custom_template/template.html
$ about attrib —--template /home/custom_template/template.html LOCATION OUTPUT
—-—vartext

This option allow you to pass variable texts to the attribution template

$ about attrib —--vartext "title=Attribution Notice" --vartext "header=Product 101"
—LOCATION OUTPUT

Users can use the following in the template to get the vartext:
{{ vartext_dict['title'] }}
{{ vartext_dict['header'] }}

—-—verbose

This option tells the tool to show all errors found.
The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

The following data are passed to jinja2 and, therefore, can be used for a custom template:
* about object: the about objects
* common_licenses: a common license keys list in licenses.py
* license_key_and_context: a dictionary list with license_key as a key and license text as the value
¢ license_file_name_and_key: a dictionary list with license file name as a key and license key as the value

¢ license_key_to_license_name: a dictionary list with license key as a key and license file name as the value

128 Chapter 1. Aboutcode Projects

AboutCode

check

Syntax

about check [OPTIONS] LOCATION

LOCATION: Path to an ABOUT file or a directory with ABOUT files.

Options:

——verbose Show all the errors and warning
-h, ——-help Show this message and exit.
Purpose

Validating ABOUT files at LOCATION.

Options

-—-verbose

This option tells the tool to show all errors found.
The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

$ about check --verbose /home/project/about_files/

gen

Syntax

about gen [OPTIONS] LOCATION OUTPUT

LOCATION: Path to a JSON or CSV inventory file.
OUTPUT: Path to a directory where ABOUT files are generated.

Options:

——fetch-license KEY Fetch licenses text from a DejaCode API. and
create <license>.LICENSE side-by-side
with the generated .ABOUT file using data
fetched from a DejaCode License Library. The
following additional options are required:

api_url - URL to the DejaCode License Library
API endpoint

api_key - DejaCode API key
Example syntax:

about gen —--fetch-license 'api_url' 'api_key'
——license-notice-text-location PATH Copy the 'license_file' from the directory to
the generated location.

(continues on next page)

1.5. AboutCode-Toolkit Documentation 129

AboutCode

(continued from previous page)

—-mapping Use for mapping between the input keys and
the ABOUT field names - mapping.config
—--mapping-file Use a custom mapping file with mapping between,
—input
keys and ABOUT field names.
——verbose Show all the errors and warning.
-g, —-quiet Do not print any error/warning.
-h, —-help Show this message and exit.
Purpose

Given an inventory of ABOUT files at location, generate ABOUT files in base directory.

Options

——fetch-license

Fetch licenses text from a DejaCode API. and create <license>.LICENSE side-by-side
with the generated .ABOUT file using data fetched from a DejaCode License Library.

This option requires 2 parameters:
api_url - URL to the DJE License Library
api_key - Hash key to authenticate yourself in the API.

In addition, the input needs to have the 'license_expression' field.
(Please contact nexB to get the api_x value to use for this feature)

$ about gen —--fetch-license 'api_url' 'api_key' LOCATION OUTPUT
——license—notice-text-location

Copy the license files and notice files to the generated location based on the
'license_file' and 'notice_file' value in the input from the directory

For instance,

the directory, /home/licenses_notices/, contains all the licenses and notices,
—that you want:

/home/license/apache2.LICENSE

/home/license/jquery.js.NOTICE
$ about gen --license-notice-text—-location /home/licenses_notices/ LOCATION OUTPUT
—--mapping

See mapping.config for details
—--mapping-file

Same behavior as '~--mapping’ but with custom mapping file

$ about attrib --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT

—-—verbose

(continues on next page)

130 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

This option tells the tool to show all errors found.
The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

inventory

Syntax

about inventory [OPTIONS] LOCATION OUTPUT

LOCATION: Path to an ABOUT file or a directory with ABOUT files.
OUTPUT: Path to the JSON or CSV inventory file to create.

Options:

——filter TEXT Filter for the output inventory.

-f, ——format [Json|csv] Set OUTPUT file format. [default: csv]

—-mapping Use file mapping.config to collect the defined not

—supported fields in ABOUT files.

—-—mapping-file Use a custom mapping file with mapping between input
keys and ABOUT field names.

—-—-mapping-output FILE Use a custom mapping file with mapping between
ABOUT field names and output keys

—--verbose Show all the errors and warning.

-q, ——quiet Do not print any error/warning.

-h, ——-help Show this message and exit.

Purpose

Collect a JSON or CSV inventory of components from ABOUT files.

Options

—-filter TEXT
Filter for the output inventory.
$ about inventory --filter "license_expression=gpl-2.0" LOCATION OUTPUT

The above command will only inventory the ABOUT files which have the "license_
—expression: gpl-2.0"

-f, ——format [json]|csv]

Set OUTPUT file format. [default: csv]
$ about inventory -f json LOCATION OUTPUT
—-—mapping

See mapping.config for details

(continues on next page)

1.5. AboutCode-Toolkit Documentation 131

AboutCode

(continued from previous page)

—--mapping-file
Same behavior as '~--mapping’ but with custom mapping file
$ about inventory --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT
—-—-mapping-output
Same behavior as "~—--mapping-file® but with custom mapping file
In the custom mapping file, the left side is the custom key name where
the right side is the ABOUT field name. For instance,

Component: name

The "Component" is a custom field name for the output
The "name" is one of the defaul ABOUT field name that user want to convert

$ about inventory --mapping-output CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT
—--verbose

This option tells the tool to show all errors found.
The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

Special Notes

Multiple licenses support format

The multiple licenses support format for CSV files are separated by line break

about_resource name license_key license_file

test.tar.xz test
apache-2.0 apache-2.0.LICENSE
mit mit. LICENSE

The multiple licenses support format for ABOUT files are by “grouping” with the keyword “licenses”

about_resource: test.tar.xz
name: test
licenses:
- key: apache 2.0
name: apache-2.0.LICENSE
- key: mit
name: mit.LICENSE

1.5.3 ABOUT File Specification v3.1.2

132 Chapter 1. Aboutcode Projects

AboutCode

Purpose

An ABOUT file provides a simple way to document the provenance (origin and license) and other important or in-
teresting information about a software component. An ABOUT file is a small YAML formatted text file stored in
the codebase side-by-side with the software component file or archive that it documents. No modification of the
documented software is needed.

The ABOUT format is plain text with field name/value pairs separated by a colon. It is easy to read and create by
hand and is designed first for humans, rather than machines. The format is well-defined and structured just enough to
make it easy to process with software as well. It contains enough information to fulfill key license requirements such
as creating credits or attribution notices, collecting redistributable source code, or providing information about new
versions of a software component.

Getting Started

A simple and valid ABOUT file named httpd. ABOUT may look like this:

about_resource: httpd-2.4.3.tar.gz
name: Apache HTTP Server
version: 2.4.3
homepage_url: http://httpd.apache.org
download_url: http://archive.apache.org/dist/httpd/httpd-2.4.3.tar.gz
license_expression: apache-2.0
licenses:
- key: apache-2.0
- file: apache-2.0.LICENSE
notice_file: httpd.NOTICE
copyright: Copyright (c) 2012 The Apache Software Foundation.

The meaning of this ABOUT file is:

e The file “httpd-2.4.3.tar.gz” is stored in the same directory and side-by-side with the ABOUT file
“httpd. ABOUT” that documents it.

* The name of this component is “Apache HTTP Server” with version “2.4.3”.
* The home URL for this component is http://httpd.apache.org

e The file “httpd-2.4.3.tar.gz” was originally downloaded from http://archive.apache.org/dist/
httpd/httpd-2.4.3.tar.gz

* In the same directory, “apache-2.0.LICENSE” and “httpd. NOTICE” are files that contain respectively the license
text and the notice text for this component.

* This component is licensed under “apache-2.0”
Specification

An ABOUT file is an ASCII YAML formatted text file. Note that while Unicode characters are not supported in an
ABOUT file proper, external files can contain UTF-8 Unicode.

ABOUT file name

An ABOUT file name can use a limited set of characters and is suffixed with a “.ABOUT” extension using any
combination of uppercase and lowercase characters.

A file name can contain only these US-ASCII characters:

1.5. AboutCode-Toolkit Documentation 133

http://httpd.apache.org

AboutCode

¢ digits from 0 to 9
* uppercase and lowercase letters from A to Z
° the following SymbOlS: 44_77’ ‘4_46’ G‘+’7’ 6‘.”’ “(‘G’ ‘4)’7’ 6‘~’7, L‘[‘(, “]’7’ 6‘{‘6, “}’7

* The case of a file name is not significant. On case-sensitive file systems (such as on Linux), a tool must report an
error if two ABOUT files stored in the same directory have the same lowercase file name. This is to ensure that
ABOUT files can be used across file systems. The convention is to use a lowercase file name and an uppercase
ABOUT extension.

Lines of text

An ABOUT file contains lines of US-ASCII text. Lines contain field names/values pairs. The standard line ending is
the LF character. The line ending characters can be any LF, CR or CR/LF and tools must normalize line endings to LF
when processing an ABOUT file. Empty lines and lines containing only white spaces that are not part of a field value
continuation are ignored. Empty lines are commonly used to improve the readability of an ABOUT file.

Field name

A field name can contain only these US-ASCII characters:
* digits from 0 to 9
* uppercase and lowercase letters from A to Z
¢ the “_” underscore sign.

* Field names are not case sensitive. For example, “HOMEPAGE_URL” and “HomePage_url” represent the same
field name.

* A field name must start at the beginning of a new line. It can be followed by one or more spaces that must be
ignored. These spaces are commonly used to improve the readability of an ABOUT file.

Field value

IR [T

The field value is separated from the field name by a “:” colon. The “:”” colon can be followed by one or more spaces
that must be ignored. This also applies to trailing white spaces: they must be ignored.

The field value is composed of one or more lines of plain US-ASCII printable text.

When a field value is a long string, additional continuation lines must start with at least one space. In this case, the
first space of an additional continuation line is ignored and should be removed from the field value by tools.

For instance:

description: This is a long description for a
software component that additional continuation line is used.

When a field value contains more than one line of text, a 'literal block'
(using |) is need.

For instance:

134 Chapter 1. Aboutcode Projects

AboutCode

description: |
This is a long description for a software component that spans
multiple lines with arbitrary line breaks.

This text contains multiple lines.

Fields are mandatory or optional

As defined in this specification, a field can be mandatory or optional. Tools must report an error for missing mandatory
fields.

Extension and ignored fields

An ignored field is a field with a name that is not defined in this specification. Custom extension fields are also
supported and must be processed by tools as ignored fields unless a certain tool can process a certain extension field.

Fields validation

When processing an ABOUT file, tools must report a warning or error if a field is invalid. A field can be invalid for
several reasons, such as invalid field name syntax or invalid content. Tools should report additional validation error
details. The validation process should check that each field name is syntactically correct and that fields contain correct
values according to its concise, common sense definition in this specification. For certain fields, additional and specific
validations are relevant such as checksum verification, URL validation, path resolution and verification, and so forth.
Tools should report a warning for ignored fields.

Fields order and multiple occurrences

The field order does not matter. Multiple occurrences of a field name is not supported.

The tool processing an ABOUT file or CSV/JSON input will issue an error when a field name occurs more than once
in the input file (as for any other ignored field).

Field referencing a file

The actual value of some fields may be contained in another file. This is useful for long texts or to reference a common
text in multiple ABOUT files such as a common license text. In this case the field name is suffixed with “_file” and
the field value must be a path pointing to the file that contains the actual value of the field. This path must be a POSIX
path relative to the path of the ABOUT file. The file content must be UTF-8-encoded text. This is in contrast with field
values contained directly in an ABOUT file that must be US-ASCII- encoded text and allows to support non-ASCII
text content.

For example, the full license text for a component is often stored in a separate file named COPYING:

licenses:
- file: linux.COPYING

In this example, the README file is stored in a doc directory, one directory above the ABOUT file directory, using a
relative POSIX path:

licenses:
- file: ../docs/ruby.README

1.5. AboutCode-Toolkit Documentation 135

AboutCode

Field referencing a URL

The value of a field may reference URLs such as a homepage or a download. In this case the field name is suffixed
with “_url” and the field value must be a valid absolute URL starting with ftp://, http:// orhttps://. URLs
are informational and the content they may reference is ignored. For example, a download URL is referenced this
way:

download_url: http://www.kernel.org/pub/linux/kernel/v3.0/1linux-3.4.20.tar.bz2

Flag fields

Flag fields have a “true” or “false” value. True, T, Yes or Y , x must be interpreted as “true” in any case combination.
False, F, No or N must be interpreted as “false” in any case combination.

Referencing the file or directory documented by an ABOUT file

An ABOUT file documents one file or directory. The mandatory “about_resource” field reference the documented file
or directory. The value of the “about_resource” field is the name or path of the referenced file or directory.

A tool processing an ABOUT file must report an error if this field is missing.

By convention, an ABOUT file is often stored in the same directory side-by-side to the file or directory that it docu-
ments, but this is not mandatory.

For example, a file named django.ABOUT contains the following field to document the django-1.2.3.tar.gz archive
stored in the same directory:

about_resource: django-1.2.3.tar.gz

In this example, the ABOUT file documents a whole sub-directory:

about_resource: linux-kernel-2.6.23

T3t

In this example, the ABOUT file documents the current directory, using a “.” period to reference it:

about_resource:

Other Mandatory fields

When a tool processes an ABOUT file, it must issue an error if these mandatory field are missing.
* about_resource: The resource this file referencing to.

* name: Component name.

Optional Information fields

 version: Component or package version. A component or package usually has a version, such as a revision
number or hash from a version control system (for a snapshot checked out from VCS such as Subversion or
Git). If not available, the version should be the date the component was provisioned, in an ISO date format such
as ‘YYYY-MM-DD’.

* spec_version: The version of the ABOUT file format specification used for this file. This is provided as a hint
to readers and tools in order to support future versions of this specification.

136 Chapter 1. Aboutcode Projects

AboutCode

¢ description: Component description, as a short text.

* download_url: A direct URL to download the original file or archive documented by this ABOUT file.
* homepage_url: URL to the homepage for this component.

* changelog_file: Changelog file for the component.

* notes: Notes and comments about the component.

Optional Owner and Author fields

» owner: The name of the primary organization or person(s) that owns or provides the component.

» owner_url: URL to the homepage for the owner.

* contact: Contact information (such as an email address or physical address) for the component owner.
* author: Name of the organization(s) or person(s) that authored the component.

* author_file: Author file for the component.

Optional Licensing fields

 copyright: Copyright statement for the component.
* notice_file: Legal notice or credits for the component.
* notice_url: URL to a legal notice for the component.

* license_file: License file that applies to the component. For example, the name of a license file such as LICENSE
or COPYING file extracted from a downloaded archive.

e license_url: URL to the license text for the component.

* license_expression: The license expression that apply to the component. You can separate each identifier using
”or” and ” and ” to document the relationship between multiple license identifiers, such as a choice among
multiple licenses.

¢ license_name: The license short name for the license.

¢ license_key: The license key(s) for the component.

Optional Boolean flag fields
* redistribute: Set this flag to yes if the component license requires source code redistribution. Defaults to no
when absent.

* attribute: Set this flag to yes if the component license requires publishing an attribution or credit notice. Defaults
to no when absent.

« track_changes: Set this flag to yes if the component license requires tracking changes made to a the component.
Defaults to no when absent.

» modified: Set this flag to yes if the component has been modified. Defaults to no when absent.

* internal_use_only: Set this flag to yes if the component is used internal only. Defaults to no when absent.

1.5. AboutCode-Toolkit Documentation 137

AboutCode

Optional Extension fields

You can create extension fields by prefixing them with a short prefix to distinguish these from the standard fields. You
should provide documentation for these extensions and create or extend existing tools to support these extensions.
Other tools must ignore these extensions.

Optional Extension fields to reference files stored in a version control system (VCS)

These fields provide a simple way to reference files stored in a version control system. There are many VCS tools such
as CVS, Subversion, Git, ClearCase and GNU Arch. Accurate addressing of a file or directory revision in each tool in
a uniform way may not be possible. Some tools may require access control via user/password or certificate and this
information should not be stored in an ABOUT file. This extension defines the ‘vcs’ field extension prefix and a few
common fields to handle the diversity of ways that VCS tools reference files and directories under version control:

* vcs_tool: VCS tool such as git, svn, cvs, etc.

* vcs_repository: Typically a URL or some other identifier used by a VCS tool to point to a repository such as an
SVN or Git repository URL.

* vcs_path: Path used by a particular VCS tool to point to a file, directory or module inside a repository.
* vcs_tag: tag name or path used by a particular VCS tool.

* vcs_branch: branch name or path used by a particular VCS tool.

* vcs_revision: revision identifier such as a revision hash or version number.

Some examples for using the ves_* extension fields include:

vcs_tool: svn

vcs_repository: http://svn.code.sf.net/p/inkscape/code/inkscape_project/
ves_path: trunk/inkscape_planet/

vcs_revision: 22886

or:

vcs_tool: git

vcs_repository: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
vcs_path: tools/lib/traceevent

vcs_revision: b59958d90b3e75a3b66cd311661535£94f5beddl

Optional Extension fields for checksums
These fields support checksums (such as SHA1 and MD5)commonly provided with downloaded archives to verify
their integrity. A tool can optionally use these to verify the integrity of a file documented by an ABOUT file.

* checksum_md5: MDS for the file documented by this ABOUT file in the “about_resource” field.

¢ checksum_shal: SHAL for the file documented by this ABOUT file in the “about_resource” field.

Some examples:

checksum_md5: £30b9cl73blf19cfd42ffad4f78ed4b96¢C

138 Chapter 1. Aboutcode Projects

AboutCode

1.6 AboutCode Data : ABCD

1.6.1 Summary
ABCD is an abbreviation for ABout Code Data. The AboutCode Data goal is to provide a simple, standardized and
extensible way to document data about software code such that:

* Itis a common way to exchange data about code between any nexB tools by import and export.

* It becomes the preferred way to exchange data between nexB tools and other tools.

* It could become a valuable structure to exchange data between any tools concerned with data about software.
ABCD is technology and programming language neutral, preferring JSON or YAML document formats.

ABC Data is structured around a few basic objects: Products, Components, Packages, Files, Parties and Licenses. It
is extensible to other specific or future object types.

Objects have “attributes” that are simple name/value pairs. A value can be either a plain value or another object or a
list of objects and attributes.

ABC Data is minimally specified by design: only a few basic objects and attributes are documented with conventions
to name and structure data and how to define relationships between objects. There is only a small reference dictionary
for some well known attributes documented here.

The planned benefit for tools using ABC Data is simplified data exchange and integration between multiple best-of-
breed tools.

1.6.2 Context

There is currently no easy way to describe information about code and software in a simple and standardized way.
There have been many efforts to provide this data in a more structured way such as:

¢ SPDX (focused on packages and licenses),

* DOAP (focused on projects),

* The original ABOUT metafile format, and

* The many different software package metadata formats (Maven, NPM, RPM, Deb, etc).
These data structures are fragmented and generally too purpose- or technology-specific.
Recently there have been efforts to collect and expose more data such as:

* libraries.io (a catalog of packages, AGPL-licensed) and dependencyci.com its companion commercial service,

* versioneye.com (a catalog of package versions updates, now MIT-licensed),

* softwarearchive.org (an effort to build an all-encompassing software source code archive),

* sources.debian.net (a Debian-focused code and metadata search facility),

* searchcode.com (an add-supported source code search engine exposing some metadata)

e appstream (a cross-distro effort to normalize desktop package metadata access to Linux desktops https:/www.
freedesktop.org/software/appstream/docs/).

These efforts are all useful, but they do not address how you can consistently exchange data about code in a user-centric
and technology-neutral, normalized way.

1.6. AboutCode Data : ABCD 139

https://www.freedesktop.org/software/appstream/docs/
https://www.freedesktop.org/software/appstream/docs/

AboutCode

Why does this matter? Software and code are everywhere. FLOSS code is exploding with millions of components and
packages. The data about this code is out there somewhere but getting it is harder than needed. This a problem of data
normalization, aggregation and exchange.

Whether you consume or produce software, accessing and creating normalized data about your code and the code you
use should be made easier such that:

* You can efficiently make code selection and re-use decisions,
* You can discover what is in your code, and

* You can continuously track updates, bugs, licenses, liveliness, quality and security attributes of the code you use
or consider using.

With the notable exceptions of SPDX and the earlier versions of the ABOUT format, available data formats about
software have been designed first for a specific technology (e.g. Linux distros) or programming language (e.g. maven,
npm, etc.) and documentation of code provenance and related attributes has been secondary and minimal. In most
cases, the primary focus has been to provide first comprehensive support for package installation, dependency resolu-
tion or package building and provenance and licensing information is often treated with lesser details.

1.6.3 ABCD: the AboutCode Data structure

ABCD is an abbreviation for ABout Code Data. The goal is to provide a simple, standardized and extensible way to
document things about software code.

In contrast with other approaches, the AboutCode Data structure is focused on providing data that is useful to users
first and is not limited to software package data only. AboutCode Data need not be as strictly specified as traditional
package manager data formats because its purpose is not to drive a software build, package creation or software
installation nor is it to compute the resolution of dependencies. It only provides information (metadata) about the
code.

The vision for the ABC Data structure is to provide a common way to exchange data about code between all nexB tools,
such that these tools can all import and export data about code seamlessly (TraceCode, ScanCode, AboutCode Man-
ager, AttributeCode, upcoming MineCode, etc.). The ABCD structure should also be the preferred way to exchange
data about code between nexB tools and other tools. We may create small adapters to convert other data formats in
and out of the ABCD structure and encourage other tool authors to natively support ABC Data, though the main focus
is on our tools.

The ABCD structure is technology and programming language neutral and designed so that the parties exchanging data
about code can do so reliably with some minimal conventions; and that the data is easily processed by machines and
not hard to read by humans.

ABC Data is structured around “objects”. Objects have “attributes” that are simple name/value pairs. A value can be
either a plain value or another object or a list of nested objects and attributes.

ABC Data is organized around:
* a few known object types,
* simple conventions to create lists of objects and describe object relationships,
* simple conventions to create attributes as name/value pairs, and
* asmall dictionary or vocabulary of well-known attribute names that have a common definition across all tools.

ABC Data is “under-specified” by design: only a few essential objects and attributes are documented here with the
conventions on how to structure the ABC Data.

140 Chapter 1. Aboutcode Projects

AboutCode

1.6.4 Basic objects describing data about code

At the top level we have these main object types:
* Product(s): a software product, application or system such as a Cost Accounting application.

* Component(s): a software component, such as the PostgreSQL 9 database system, usually a significant or major
version

» Package(s): a set of files that comprise a Component as used, such as a postgresql-9.4.5-linux-x86.zip archive.
The version is exact and specific.

« File(s): any file and directory identified by a path, such as a binary package or a source code directory or file.
And these secondary, important but less prominent object types:

 Party(ies): a person or an organization. An organization can be a project, formally or informally organized, a
company, a department within a company, etc. A Party typically has contact information (such as an email or
physical address or home url). A Party may have defaults that apply to much of its software (for an org that
creates software) such as a default Apache license for Apache Foundation projects. Parties often relate to other
objects through a role relationship such as owner, author, maintainer, etc.

 License(s): information about the license of code. A License typically has a name, text and additional categories.
(tags or attributes).

Each of these objects has a few identifying attributes and eventually many tool- or application-specific data attributes.
Each tool defines and documents the attributes they can handle and care for. When some agreement is reached on the
definition of new attributes or objects, the ABCD dictionary may be updated accordingly with new objects types such
as for software security, quality or other interesting aspects.

Objects are interrelated with other objects. Objects can relate to each other via a reference using identifiers pointing
to other objects or via an embedded list of objects. The nature of the relationship between two objects can also be
specified with additional attributes as needed.

Here are typical relationships between objects:

_—

Products ————

"\-\l w4

\ h}:;- II
.-_I_\-\. o "“. |
Packages |-4 \
-\'"\l",l

A K

o
—_—

&

-"-.

Here is an example of relationships for a simple Widget product:

1.6. AboutCode Data : ABCD 141

AboutCode

| Widigel-1.23 |'\-_'--._L_

- Y
— |)
~1 PHP T - F —
| | MySQL 5 J—-.:-___ /
i —, ~ '-**‘i—-[GPL-2.0 |
s = , ;
PHP Group e T H\H X
____-- .-H"'-\. e Y, ____.d' I.
- %, § \
- o .I' F L
phip-T-betaZ gz | | mysq-5.15.2ip .
Oracle I _ Y
4, m P 1 .) |
L L
)
Files | Files I

Tools can define any custom objects and some used more commonly may be promoted to be documented here over
time.

1.6.5 Attribute Names and Values

By convention, a tool receiving ABC Data should process only the data it knows and should ignore unknown attributes
or objects. This is important to allow the data structure to evolve and provide some forward and backward compatibil-
ity. When an ABCD payload contains data elements that a receiver does not know about, the receiver should still be
able to process the known objects and attributes.

* Attributes are name/value pairs.

 Attribute names are always strings, not numbers, not booleans, not any other data format. In these strings,
leading and trailing white spaces (spaces, tabs, line returns, etc) are not significant and can be safely ignored or
removed.

* Attribute values are one of the standard JSON types: string, number, boolean or null. In strings, leading and
trailing white spaces (spaces, tabs, line returns, etc) are not significant and can be safely ignored or removed.

* Self-explicit names should be used rather than obscure names or abbreviations: names should be self-explicit
and self-evident.

Except for the data organization conventions described here and the use of the well-known object and attribute names,
nothing is mandatory in the ABCD format. This means that even partial, incomplete or sketchy data about code can
be transferred in this format.

The meaning of well known object names such as Product, Component, Package, File, Party and License is defined in
this document.

1.6.6 Name conventions

e Names are strings composed ONLY of ASCII letters, numbers or underscores. Names cannot start with a
number. Names cannot contain spaces nor other punctuation, not even a dot or period.

» Names are NOT case sensitive: upper or lowercase does not matter and the standard is to use lowercase. It is
a mistake to use upper or mixed case but this is something a parser receiving ABC Data should recover from
nicely by converting the names to lowercase.

142 Chapter 1. Aboutcode Projects

AboutCode

* Names are made of English words: there is no provision currently for non-English names. Tools that deal with
multilingual content may define their own conventions to provide content in other languages. ABCD may add
one of these conventions in the future.

* Parser implementation can be smarter and gentler: For names, anything that is not ASCII or number or under-
score can be accepted by a parser and could be replaced by an underscore, including a starting digit if any. Or
a parser may provide a warning if there is an unknown name that is very close to a well known name. Or a
parser may accept CamelCase and transform names to underscore_case and perform another transformation to
conventional ABC Data.

¢ Names are singular or plural: When a name refers to more than one item, the name of the field is plural and the
value is a list of values. For instance “url” and “urls”.

* Top level known objects are ALWAYS plural and stored in lists: “parties” or “files” or “products” or “compo-
nents”. This makes it easier to write tools because the top level types are always lists, even when there is a single
object in that list.

* A value must not be used as a name: in an attribute name/value pair, the name is always a name, not a value and
every value must have a name.

* For instance, this JSON snippet would not be correct where a URL is used as a name:

’{"http://someurl.com": "this is the home URL"}

» Use rather this form to specify a name for the URL attribute:

’{"url": "http://someurl.com", "note": "this is the home URL"}

* But this would be correct when using a list of plain values where “urls” is plural:

’{"urls": ["http://someurl.com", "http://someurl2.com"]}

* An attribute names without a value is not needed. Only names with values are needed, and attributes without
values can be omitted: each tool may do what it wants for these cases. For instance it may be handy to provide
all attributes even if not defined in an API payload. But when serializing data as YAML, meant for human
editing, including all empty values may not help with reading and processing the YAML text. An undefined
attribute without a set value should be assigned with the null JSON value: this has the same meaning as if the
attribute was not specified and absent from the payload. If you want to specify that an attribute has an empty
value and does not have a value (as opposed to have an unknown value) use an empty string instead.

* Avoid abbreviated names, with some exceptions. Names should always be fully spelled out except for:

url: uniform resource locator

— uri: uniform resource identifier

— urn: uniform resource name

— vcs: version control system

— uuid: universally unique identifier, used for uuid4 string https://tools.ietf.org/html/rfc4122.html
— id: identifier

— info: information

— 0s: operating system

arch: architecture

* For some common names we use the common compound form such as:

— codebase: and not code_base

1.6. AboutCode Data : ABCD 143

https://tools.ietf.org/html/rfc4122.html&sa=D&ust=1487355496775000&usg=AFQjCNFPvpqA_MFbGaOmykUF8a5GGUKRSw

AboutCode

— filename: and not file_name

— homepage: and not home_page

Well known attribute names include:

name: the name of a product, component, license or package.

version: the version of a product, component, package.

description: description text.

type: some type information about an object. For instance, a File type could be: directory, file or link.

keywords: a list of keywords about an object. For example, the keywords of a component used to “tag” a
component.

path: the value is the path to a file or directory, either absolute or relative and using the POSIX convention (a
forward slash as separator). For Windows paths, replace backslash with forward slashes. Directories should end
with a slash in a canonical form.

key: the value is some key string, slug-like, case-insensitive and composed only of ASCII letters and digits,
dash, dot and underscore. No white spaces. For example: org.apache.maven-parent

role: the value describes the role of a Party in a relationship with other objects. For instance a Party may be the
“owner” or “author” of a Component or Package.

uuid: a uuid4 string https://tools.ietf.org/html/rfc4 122 . html

algorithms for checksums: to store checksums we use a name/value pairs where the name is an algorithm
such as shal and the value is a checksum in hexadecimal such as “shal”: “asasa231212” . The value is the
standard/default string created by command line tools such as shalsum. Supported algorithms may evolve over
time. Common checksums include md5, shal, sha256, sha512.

notes: some text notes. This is an exception to the singular/plural rule for names: notes is a single text field and
not a list.

As the usage of the ABCD structure matures, more well known names will be documented in a vocabulary.

1.6.7 Value conventions

Attribute values are one of the standard JSON types: string, number, boolean or null. In strings, leading and
trailing white spaces (spaces, tabs, line returns, etc) are not significant and can be safely ignored or removed.

To represent a date/time use the ISO format such as 2016-08-15 defaulting to UTC time zone if the time zone is
not specified in the date/time stamp.

All string values are UTF-8 encoded.

Well known name prefixes or suffixes can be used to provide a type hint for the value type or meaning:

xxx_count, xxx_number, xxx_level: the value is an integer number. Example: results_count or curation_level

date_xxx or xxx_date: the value is a date/time stamp in ISO format such as 2016-08-16 (See https://www.ietf.
org/rfc/rfc3339.txt). Examples: last_modified_date, date_created

xxx_url: the value is a URL for web http(s) or ftp url that points to an existing valid web resource (that could
possibly no longer exist on the web). Example: homepage_url or api_url

xxx_uri: the value is a URI typically used as an identifier that may not point to an existing web resource.
Example: git://github.com/nexb/scancode-toolkit

xxx_file or xxx_path: the value is a file path. This can come handy for external files such as a license file.
Example: notice_file

144

Chapter 1. Aboutcode Projects

https://tools.ietf.org/html/rfc4122.html
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

AboutCode

» xxx_filename: the value is a file name. Example: notice_filename

* xxx_text: the value is a long text. This is only a hint that it may be large and may span multiple lines. Example:
notice_text

¢ xxx_line: such as start_line and end_line: the value is a line number. The first line number is 1.
» xxx_status: such as configuration_status. Indicates that the value is about some status.

* xxx_name: such as short_name. Indicates that the value is a name. Commonly used for long_name, short_name.
The bare name shout be preferred for the obvious and most common way an object is named.

» xxx_flag, is_xxx, has_xxx: such as is_license_notice. Indicates that the string value is a boolean.

1.6.8 Object identifiers

We like objects to be identifiable. There is a natural way to identify and name most objects: for instance, the full name
of a person or organization or the name and version of a Component or Package or the path to a File, are all natural
identifiers to an object.

However, natural names are not always enough to fully identify an object and may need extra context to reference an
object unambiguously. There could be several persons or organizations with the same name at a different address. Or
the foo-1.4 Package could be available as a public RubyGem and also as an NPM; or a private Python package foo-1.4
has been created by a company and is also available on Pypi. Or the “foo” Package is the name of a Linux Package,
an NPM and a Ruby Package but these three packages are for unrelated components.

Hence each object may need several attributes to be fully identifiable.

For example, public package managers ensure that a name is unique within the confines of a source. “logging” is the
unique name of a single Sourceforge project at https://sourceforge.net/projects/logging/ . “logging” is the unique name
of an Apache project at the Apache Foundation http://logging.apache.org/ .

Yet, these two names point to completely different software. In most cases, providing information about the “source”
where an identifier is guaranteed to be unique is enough to ensure proper identification. This “source” is easily
identified by its internet source name, and an internet source name is guaranteed to be unique globally. The “source” of
identifiers is not mandatory but it is strongly encouraged to use as an attribute to provide good unique identifiers. Still,
tools exchanging ABC Data must be able to exchange under-specified and partially identified data and may sometimes
rely on comparing many attributes of two objects to decide if they are the same.

The minimal way to identify top level objects is the combination of a “source” and a unique identifier within this
source. The source can be implicit when two parties are exchanging data privately or explicit using the “source”
attribute.

Within a source, we use the most obvious and natural identifies for an object. For example:
* For Products, Components and Packages we can use their name and version.

* For Files we use a path of a file or directory, possibly relative to a package or a product codebase; or a check-
sum of a file or archive such as a shal.

* For Parties, we use a name possibly supplemented with a URL or email.
* For all object types we can use a “universally unique id”” or UUID-4 (https://tools.ietf.org/html/rfc4122.html)
* For all object types, we can use a key, which is a slug-like string identifier such as a license key.

* For all object types, we can use a URN (https://en.wikipedia.org/wiki/Uniform_resource_name) Tools may also
define their own URNSs, namespaces and names such as a DejaCode urn is, urn:dje:component: 1 6fusb:1.0

Beyond direct identification, an object may have several alternative identifiers, aka “external references”. For instance
a Package may have different names and slightly different versions in the Linux, Debian or Fedora distros and a Pypi

1.6. AboutCode Data : ABCD 145

https://sourceforge.net/projects/logging/
http://logging.apache.org/
https://tools.ietf.org/html/rfc4122.html
https://en.wikipedia.org/wiki/Uniform_resource_name
urn:dje:component:16fusb:1.0

AboutCode

Package with yet another name where all these Packages are for the same Component and the same code. Or a Party
such as the Eclipse Foundation may be named differently in DejaCode and the NVD CPEs.

To support these cases, the “external_reference(s)” attribute can be used where needed in any object to reference one
or more external identifiers and what is the source for this identifier (note: “external” is really a matter of point of
view of who owns or produces the ABC Data). An attribute with name suffix of “xxx_reference” may also be used to
provide a simpler external reference, such as “approval_reference”.

For example, this ABC Data could describe the external id of Party to a CPE and to TechnoPedia (here in a YAML
format):

parties:

— name: Apache Foundation
homepage_url: http://apache.org
type: organization
external_references:

— source: nvd.nist.gov

identifier: apache
— source: technopedia.com

identifier: Apache Foundation (The)
— source: googlecode.com

identifier: apache-foundation

Other identifiers may also be used, as needed by some tools, such as in hyperlinked APIs.

1.6.9 Organizing data and relationships
Describing relationships between objects is essential in AboutCode Data. There are two ways to describe these rela-
tionships: by referencing or by embedding objects.

When using a reference, you relate objects by providing identifiers to these objects and may provide additional object
details in separate lists. When embedding, you include not only the reference but also the related object details in
another object data. This could include all data about an object or a subset as needed.

For example, this components list embeds a list of two packages.

Note: “components” is always a list, even when it has a single component:

{"components": [{

"source": "http://apache.org",

"name": "Apache httpd",

"version": "2.3",

"packages": [
{"name": "httpd",
"version": "2.3.4",
"download_url": "http://apache.org/dist/httpd/httpd-2.3.4.zip",
"shal": "acbf2325636labcdf",
"size": 3267,
"filename": "httpd-2.3.4.zip"
}V

{"name": "httpd",

"version": "2.3.5",

"download_url": "http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",
"shal": "ac882325636ladfcdf",

"size": 33267,

"filename": "httpd-2.3.5.tar.gz"

(continues on next page)

146 Chapter 1. Aboutcode Projects

AboutCode

(continued from previous page)

11}

In this example, the component list references two packages that are listed separately and uses the checksum as
package identifiers for the reference. This data is strictly equivalent to the previous example but using a different
layout. When all the data is provided, the effect of embedding or referencing objects results in the same data, just

organized differently:

{"components": [{
"source": "http://apache.org",
"name": "Apache httpd",
"version": "2.3",
"packages": [
{"shal": "aacbf2325636labcdf"},
{"shal": "ac882325636ladfcdf"}

1y

"packages": [
{"name": "httpd", "version": "2.3.4",
"download_url":
"http://apache.org/dist/httpd/httpd-2.3.4.zip",

"shal": "acbf2325636labcdf", "size": 23267, "filename": "httpd-2.3.4.zip"},
{"name": "httpd", "version": "2.3.5",

"download_url": "http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",

"shal": "ac882325636ladfcdf", "size": 33267, "filename": "httpd-2.3.5.tar.gz"}

1}

In this third example the packages are referencing one component instead. That component is always wrapped in a
components list. The component detail data is not provided. The details may be available elsewhere in a tool that

tracks components:

"packages": [

{"name": "httpd", "version": "2.3.4",
"download_url": "http://apache.org/dist/httpd/httpd-2.3.4.zip",
"shal": "acbf2325636labcdf", "size": 23267, "filename": "httpd-2.3.4.zip",
"components": [
{"source": "http://apache.org", "name": "Apache httpd", "version": "2.3"}
]
}I
{"name": "httpd", "version": "2.3.5",
"download_url":"http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",
"shal": "ac882325636ladfcdf", "size": 33267, "filename": "httpd-2.3.5.tar.gz",
"components": [
{"source": "http://apache.org", "name": "Apache httpd", "version": "2.3"}

Relationships can be documented with this approach in different ways. Typically when the primary concern is about a
Product, then the Product object may embed data about its Components. When the primary concern is Packages, they
may embed or reference Products or Components or files. For example:

* A tool may prefer to provide data with products or components as top level objects. The components used in a
Product are naturally embedded in the products.

1.6. AboutCode Data : ABCD 147

AboutCode

* A tool concerned more with files, will provide files as top level objects and may embed package details when
they are found for a file or directory path.

* Another tool may focus on packages and provide packages first with component references and possibly embed-
ded files. A matching tool may provide packages first and reference matched files. The file paths of a package
are naturally embedded in the package, though using references may help keep the data simpler when there is a
large volume of files.

* A tool that generates attribution documentation may focus first on components and second on licenses or pack-
ages references.

* A tool dealing with security vulnerabilities may define a Vulnerability object and reference Packages and Files
that are affected by a Vulnerability.

To better understand the embedding or referencing relationships:
* using references is similar to a tabular data layout, akin to a relational database table structure
¢ using embedding is similar to a tree data layout such as in a file/directory tree or nested data such as XML.

Another way to think about these relationships is a “GROUP BY” statement in SQL. The data can be grouped-by
Component, then Packages or grouped-by Files then Components.

Both referencing and embedding layouts can be combined freely and are not mutually exclusive. When using both at
the same time, some care is needed to avoid creating documents with conflicting or duplicated data that is referenced
and embedded at the same time.

Using references is often useful when there is an agreement on how to reference objects between two tools or parties.
For instance, when using nexB tools, a unique and well defined license key is used to reference a license rather than
embedding the full license details. A concise reference to the name and version of a public package from a well known
package repository such as RPM or Maven can be used to the same effect. Or an SPDX license identifier can be used
to reference an SPDX-listed license without having to embed its full license text.

The nature of the relationship between two objects can be specified when it is not obvious and requires some extra
specification. Each tool can define additional attributes to document these. For instance a common relationship
between a party and a product or component is a role such as owner. For packages a role can be maintainer, author,
etc. Or the license of a file or package may be the “asserted” license by the project authors. It may differ from the
“detected” license from a scan or code inspection and may further differ from a “concluded” license or a “selected”
license when there is a license choice. At the package and license level the types of relationships documented in the
SPDX specification are a good source for more details. For example this component references two parties where one
is the author and the other is the maintainer documented using a role attribute:

"components": [{
"source": "http://apache.org",
"name": "Apache httpd",
"version": "2.3",
"parties": [
" LI " " " ". n n n AL " "
. ’ . 14 . 14
{"name John Doe type person role author"}
{"name": "Jane Smith", "type": "person", "role": "maintainer"},
{"name": "Jane Smith", "type": "person", "role": "owner"},

1.6.10 Document format conventions

The default ABC Data format is JSON (though it can be serialized to anything else that would preserve its structure).
YAML is also supported and preferred for storage of simple documents that document one or a few top level objects
and that need to be edited by a human.

148 Chapter 1. Aboutcode Projects

AboutCode

The data structure by nested name/value pairs attributes and lists of values maps naturally to the corresponding JSSON
and YAML constructs. In JSON-speak these are arrays (lists) and objects (name/value pairs).

ABC Data can be provided as simple files or embedded in some API payload. As files, their content can be either
JSON or YAML and should have either a .json or .yml extension by convention. For backwards compatibility with
previous AboutCode conventions, the . ABOUT extension can be used for YAML documents. For instance this is used
in the legacy about_code_tool and its successors. The DocumentCode tool can store individual attribution data in a
ABOUT yml file.

The top level structure of an ABC Data block is always a JSON object or YAML dictionary. Depending on the context
this top level structure may be wrapped in another data structure (for instance when exchanging AboutCode Data in
some web api, the API may provide ABC Data as a payload in a “results” or “body” or “data” block and also have
some “headers” or “meta” block).

The top level elements must contain at least one of the object names and a list of objects such as here with a list of
files:

files:
- path: this/foo/bar
size: 123
shal: aaf35463472abcd
- path: that/baz

Optionally an “aboutcode_version™ attribute can be added at the top level to document which version of the AboutCode
Data structure is used for a document. For example: aboutcode_version: 4.0

Order of attributes matters to help reading documents: tools that write ABC Data should attempt to use a consistent
order for objects and attribute names rather than a random ordering. However, some tools may not be able to set a
specific order so thi is only a recommendation. The preferred order is to start with identifiers and keys and from the
most important to the least important attributes, followed by attributes grouped logically together, followed by related
objects.

1.6.11 References between documents and payload, embedding other files

ABC Data may reference other data. For instance in a hyperlinked REST API a list of URLSs to further invoke the API
and get license’ details may be provided with an api_url attribute to identify which API calls to invoke. The ways to
reference data and the semantics and mechanics of each of these embeddings or references needed to get the actual
data are not specified here. Each tool may offer its own mechanism. A convention for an hyperlinked REST API
JSON payload could be to use api_url(s) identifier to specify additional “GET”able endpoints. The AttributeCode tool
use *_file attributes in YAML or JSON documents to reference external license and notices text files to load with the
text content.

Another convention is used in ScanCode to reference license texts and license detection rules by key: An ABC Data
YAML file contains the ABC Data. And side by side there is a file with the same base name and a LICENSE, SPDX
or NOTICE, RULE, extension that contains the actual text corresponding to the license, the SPDX text or the rule text.
The convention here is to use an implicit reference between files because they have the same base name and different
extensions.

In the future, we may specify how to embed an external ABC Data file in another ABC Data file; this would only
apply to file-based ABC Data payload though and could not apply to hyperlinked REST APIs.

1.6.12 Document-as-files naming, exchange and storage

Each tool handling ABC Data may name an ABC Data file in any manner and store the data in any way that is
appropriate. The structure is a set of data exchange conventions and may be used for storage but nothing is specified
on how to do this.

1.6. AboutCode Data : ABCD 149

AboutCode

For consistency, tools consuming AboutCode Data are encouraged to use the same data structure internally and in their
user interface to organize and name the data, but this is only a recommendation.

For instance, the AttributeCode tool uses a convention to store ABC Data as YAML in a file with a . ABOUT extension
and uses the ABC Data structures internally and externally.

When exchanging data (for instance over an API), the API provider of ABC Data should support a request to return
either embedded data or data by reference and ideally allow the caller to specify which objects and attributes it is
interested in (possibly in the future using something like GraphQL).

When interacting with tools through an API, the conversation could start by sending an ABC Data payload with some
extra request data and receiving an ABC Data payload in return. For instance, when requesting matching packages
from a matching tool, you could start by passing scan data with checksums for several files at once and receive detailed
data for each of the matched files or packages.

1.6.13 Documenting and validating attributes

Each tool handling ABC Data may only be interested in processing certain objects and attributes when accepting data
in, or when providing data out. Attributes that are unknown should be ignored. To document which objects and which
attributes a tool can handle, a tool should provide some documentation. The documentation format is not specified
here, but it could use a JSON schema in the future. This should include documentation regarding if and how data
is validated, and when and how errors or warnings are triggered and provided when there is a validation error. For
example, a validation could be to check that an SPDX license id exists at SPDX or that a URL is valid.

1.6.14 Notes on YAML format

YAML is the preferred file format for ABC Data destined for reading or writing primarily by humans.
* Block-style is better.

* When you write AboutCode Data as YAML, you should privilege block-style and avoid flow-style YAML which
is less readable for humans.

¢ Avoid Multi-document YAML.
e Multi-document YAML documents should be avoided (when using the — separators).

* Beware of parser shenanigans: Most YAML parsers recognize and convert automatically certain data types such
as numbers, booleans or dates. You should be aware of this because the ABC Data strings may contain date
stamps. You may want to configure a YAML parser to deactivate some of these automated format conversions
to avoid unwanted conversions.

1.6.15 Notes on JSON Format

JSON is the preferred file format for ABC Data destined for reading and writing primarily by machines.
¢ “Streamable” JSON with JSON-lines.

A large JSON document may benefit from being readable line-by-line rather than loaded all at once in memory. For
this purpose, the convention is to use JSON lines where each line in the document is a valid JSON document itself:
this enables reading the document in line-by-line increments. The preferred way to do so is to provide one ABCD
top level object per document where the first line contains meta information about the stream such as a notice, a tool
version or the aboutcode version.

* Avoid escaped slash.

150 Chapter 1. Aboutcode Projects

AboutCode

The JSON specification says you CAN escape forward slash, but this is optional. It is best to avoid escaping slash
when not needed for better readability.

For instance for URLSs this form:

"https://enterprise.dejacode.com/component_catalog/nexB/l16fusb/1.0/" ‘

should be preferred over this escaped form when backslashes are not needed:

"https:\\/\\/enterprise.dejacode.com\\/component_catalog\\/nexB\\/16fusb\\/1.0\\/" ‘

1.6.16 Notes on embedding ABC Data in source code files.

It could be useful to include ABC Data directly in a source code file, such as to provide structured license and prove-
nance data for a single file. This requires of course a file modification. While this is not a preferred use case, it can be
handy to document your own code one file at a time. Using an external ABC Data file should be preferred but here are
conventions for this use case:

* The ABC Data should be embedded in a top level block of comments.
¢ Inside that block of comments the preferred format is YAML.
* How a tool collects that ABC Data when embedded in code is to be determined.

* Tools offering such support should document and eventually enforce their own conventions.

1.6.17 Notes on spreadsheet and CSV files

ABC Data does not support or endorse using CSV or spreadsheets for data exchange.

CSV and other spreadsheet file formats are NOT recommended to store ABC Data. In most cases you cannot store a
correct data set in a spreadsheet. However, these tools are also widely used and convenient. Here are some recom-
mendations when you need to communicate ABC data in a CSV or spreadsheet format: even though ABC Data is
naturally nested and tree-like, it should be possible to serialize certain ABCD objects as flat, tabular data.

¢ Naming columns

The table column names may need to be adjusted to correctly reference the multiple level of object and attribute nesting
using a dot as a separator. The dot or period is otherwise not allowed in attribute names. For example, you could use
files.path for files or components.name to reference a component name. Some tools may prefer to create tabular files
with their own column names and layout, and provide mappings to ABC Data attribute and object names.

» Example for an inventory:

Since ABC Data can be related by reference, the preferred (and cumbersome) way to store ABC Data in a spreadsheet
is to use one tab for each object type and use identifying attributes to relate objects between each others across tabs.
For instance, in a Bill of Materials (BOM) spreadsheet for a Product, you could use a tab to describe the Product
attributes and another tab to describe the Components used in this Product and possibly additional tabs to describe the
related packages and files corresponding to these

* Care is needed for Packages, Components and other names and for dates, versions, unicode and UTF-8 to avoid
damaging content (aka. mojibake)

Spreadsheet tools such as Excel or LibreOffice automatically recognize and convert data to their own format: a date
of 20016-08-17 may be converted to a date number when a CSV is loaded and difficult to recover as a correct original
date stamp string afterwards. Or a version 1.0 may be irreversibly converted to 1 or 1.90 to 1.9 losing important version
information.

1.6. AboutCode Data : ABCD 151

AboutCode

Spreadsheet tools may not recognize and handle properly UTF-8§ texts and damage descriptions and texts. These tools
may also treat strings starting with the equal sign as a formula. When incorrectly recognizing special accentuated
characters this may damage texts creating what is called “mojibake” (See https://en.wikipedia.org/wiki/Mojibake)

Always use these tools with caution and be prepared for damage to your data if you use these tools to save or create
ABC Data.

Impact on AttributeCode

As an integration tool, AttributeCode itself may specify only a very few elements.

The new structure will need to be implemented. Here could be an example in YAML.:

aboutcode_version: 4.0
components:
- source: dejacode.com
name: bitarray
version: 0.8.1
homepage_url: https://github.com/ilanschnell/bitarray
copyright: Copyright (c) Ilan Schnell and others

files:
- path: some/directory/
type: dir
— path: bitarray-0.8.1-cp27-cp27m-macosx_10_9_intel.whl
- path: someotherdir/bitarray-0.8.1-cp27-cp27m-manylinuxl_1686.whl
— path: bitarray-0.8.1-cp27-cp27m-manylinuxl_x86_64.whl
— path: bitarray-0.8.1-cp27-cp27m-win_amdé64.whl
- path: bitarray-0.8.1-cp27-cp27m-win32.whl
— path: bitarray-0.8.1-cp27-cp27mu-manylinuxl_1i686.whl
— path: bitarray-0.8.1-cp27-cp27mu-manylinuxl_x86_64.whl
- path: bitarray-0.8.1-cp27-none-macosx_10_6_intel.whl
— path: bitarray-0.8.1.tar.gz
parties:
— role: owner
name: Ilan Schnell
packages:
- download_url: http://pypi.python.org/packages/source/b/bitarray/bitarray-0.8.
—~l.tar.gz

shal: 468456384529%9abcdef342

license_expression: psf

licenses:
- source: scancode.com
key: psf
text_file: PSF.LICENSE

And here would be similar data in JSON:

{"components": [{
"name": "bitarray",
"version": "0.8.1"
"homepage_url": "https://github.com/ilanschnell/bitarray",
"copyright": "Copyright (c) Ilan Schnell and others",
"license_expression": "psf",

(continues on next page)

152 Chapter 1. Aboutcode Projects

https://en.wikipedia.org/wiki/Mojibake

AboutCode

(continued from previous page)

"licenses": [{"key": "psf", "text_file": "PSF.LICENSE", "source":
—"scancode.com"}],
"packages": [{"download_url": "http://pypi.python.org/packages/source/
—b/bitarray/bitarray-0.8.1.tar.gz"
"shal": "468456384529%abcdef342"
11y
"parties": [{"name": "Ilan Schnell", "role": "owner"}],
"files": [{"path": "some/directory/", "type": "dir"},
{"path": "bitarray-0.8.1-cp27-cp27m-macosx_10_9_intel.whl"},
{"path": "bitarray-0.8.1l-cp27-cp27m-manylinuxl_i686.whl1"},
{"path": "bitarray-0.8.1l-cp27-cp27m—manylinuxl_x86_64.whl"},
{"path": "bitarray-0.8.1-cp27-cp27m-win_amd64.whl"},
{"path": "bitarray-0.8.1l-cp27-cp27m-win32.whl"},
{"path": "bitarray-0.8.1l-cp27-cp27mu—manylinuxl_i686.whl"},
{"path": "bitarray-0.8.1l-cp27-cp27mu-manylinuxl_x86_64.whl"},
{"path": "bitarray-0.8.1l-cp27-none-macosx_10_6_intel.whl"},
{"path": "bitarray-0.8.1l.tar.gz"}],
1
aboutcode_version: "4.0"}

Impact on ScanCode Toolkit

The new format will need to be implemented for scan results in general and for packages in particular.

ScanCode will specify Package and several attributes related to scanning and referencing clues for files, directories
and packages.

Alternatively Packages could be extracted to an independent PackagedCode library.

The changes will minimize impact on the layout of the scan results. Here is an example of a scan payload in ABCD
format: this is essentially the standard scan format:

{

"scancode_notice": "Generated with ScanCode and provided ",
"scancode_version": "2.0.0.devO0",
"files_count": 7,
"files": [
{

"path": "samples/JGroups/src/",

"type": "directory",

"files_count": 29

"licenses" : [

{ "key":"apache-2.0",
"concluded": true}

"path": "samples/JGroups/src/GuardedBy. java",
"date": "2015-12-10",

"programming_language": "Java",

"shal": "981d67087e65e9a44957c026d4b10817c£77d966",
"name": "GuardedBy. java",

"extension": ".java",

"file_type": "ASCII text",

(continues on next page)

1.6. AboutCode Data : ABCD 153

AboutCode

(continued from previous page)

"is_text": true,
"is_source": true,
"md5": "c5064400£759d3e81771005051d17dcl",
"type": "file",
"is_archive": null,
"mime_type": "text/plain",
"size": 813,
"copyrights": [
{

"end_line": 12,

"start_line": 9,

"holder": "Brian Goetz and Tim Peierls",

"statement": "Copyright (c) 2005 Brian Goetz and Tim Peierls"

}
]I
"licenses": [
{ "detected": true,
"key": "cc-by-2.5",
"short_name": "CC-BY-2.5",

"homepage_url": "http://creativecommons.org/licenses/by/2.5/",
"dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/cc-by—

—2.5/",

"text_url": "http://creativecommons.org/licenses/by/2.5/1legalcode",

"owner": {
"name": "Creative Commons",
by
"detection_score": 100.0,
"start_line": 11,
"end_line": 11,
"category": "Attribution",
"external_reference": {
"source": "spdx.org",
"key": "CC-BY-2.5"
"url": "http://spdx.org/licenses/CC-BY-2.5",
by

1y

"path": "samples/JGroups/src/ImmutableReference. java",
"date": "2015-12-10",
"md5": "48ca3c72fb9%9a65c771a321222£118b88",
"type": "file",
"mime_type": "text/plain",
"size": "1838",
"programming_language": "Java",
"shal": "30£56b876d5576d9869e2c5c509008db57110592",
"name": "ImmutableReference. java",
"extension": ".java",
"file_type": "ASCII text",
"is_text": true,
"license_expression": "lgpl-2.1l-plus and lgpl-2.0-plus",
"is_source": true,
"copyrights": [{
"end_line": 5,
"start_line": 2,
"holder": "Red Hat, Inc.",

(continues on next page)

154

Chapter 1.

Aboutcode Projects

AboutCode

(continued from previous page)

"statement": "Copyright 2010, Red Hat, Inc."
Pl
"licenses": [
{ "detected": true,
"key": "lgpl-2.1-plus",
"category": "Copyleft Limited",
"homepage_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.1-
—standalone.html",
"start_line": 7,
"end_line": 10,
"short_name": "LGPL 2.1 or later",
"owner": "Free Software Foundation (FSF)",
"dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/lgpl-
—~2.1-plus/",
"detection_score": 100.0,
"external_ reference": {
"url": "http://spdx.org/licenses/LGPL-2.1+",
"source": "spdx.org",
"key": "LGPL-2.1+"

{ "concluded": true,

"key": "lgpl-2.0-plus",
"short_name": "LGPL 2.0 or later",
"homepage_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html",
"end_line": 20,
"dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/lgpl-
—2.0-plus/",
"text_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.0-standalone.
—html",
"owner": "Free Software Foundation (FSF)",
"start_line": 12,
"detection_score": 47.46,
"category": "Copyleft Limited",
"external_ reference": {
"url": "http://spdx.org/licenses/LGPL-2.0+",
"source": "spdx.org",
"key": "LGPL-2.0+"
}
}
]I
}I
{
"path": "samples/arch/zlib.tar.gz",
"file_type": "gzip compressed data, last modified: Wed Jul 15 11:08:19 2015,

—from Unix",
"date": "2015-12-10",
"is_binary": true,
"md5": "20b2370751labfc08bb3556c1ld8114bba",
"shal": "576f0ccfe534d7£5££5d6400078d3c6586de3abd",
"name": "zlib.tar.gz",
"extension": ".gz",
"size": 28103,
"type": "file",
"is_archive": true,
"mime_type": "application/x-gzip",
"packages": [

(continues on next page)

1.6. AboutCode Data : ABCD

155

AboutCode

(continued from previous page)

{
"type": "plain tarball"

}
i

AboutCode Manager
As a primary GUI for data review and integration, AboutCode Manager will need to be fluent in ABC Data to
read/write ABC Data locally and remotely through API from several sources.
The short term changes would include:
 Support reading ABC Data from ScanCode

» Writing ABC Data, adding conclusions as related objects in the proper lists

New and Future tools
» TraceCode: would likely specify low level attributes for files (such as debug symbols, etc) and how files are
related from devel to deploy and back.

* VulnerableCode: would likely specify a new Vulnerability object and the related attributes and may track several
identifiers to the NIST NVD CPE and CVE.

» DeltaCode: would likely specify attributes to describe the changes between codebases, files, packages.

Copyright (c) 2016 nexB Inc.

156 Chapter 1. Aboutcode Projects

CHAPTER 2

Documentation Guide

2.1 Help

AboutCode is a suite of open source projects.

2.1.1 AboutCode Projects

» ScanCode Toolkit: This is a set of code scanning tools to detect the origin and license of code and dependencies.
ScanCode Toolkit uses a plug-in architecture to run a series of scan-related tools in one process flow. This is
the most popular project and is used by hundreds of software teams. https://github.com/nexB/scancode-toolkit .
The lead maintainer is @pombredanne

* Scancode Workbench (formerly AboutCode Manager) This is a desktop application (based on Electron) to
review the results of a scan and document your conclusions about the origin and license of software components
and packages. https://github.com/nexB/aboutcode-manager . The lead maintainer is @majurg

¢ AboutCode Toolkit: This is a set of command line tools to document the provenance of your code and generate
attribution notices. AboutCode Toolkit uses small yaml files to document code provenance inside a codebase.
https://github.com/nexB/aboutcode-toolkit . The lead maintainer is @chinyeungli

» TraceCode Toolkit: This is a set of tools to trace files from your deployment or distribution packages back to their
origin in a development codebase or repository. The primary tool uses strace https://github.com/strace/strace/
to trace system calls on Linux and construct a build graph from syscalls to show which files are used to build a
binary. We are contributors to strace. Maintained by @pombredanne

e Conan: “conan” stands for “CONtainer ANalysis” and is a tool to analyze the structure and provenance of
software components in Docker images using static analysis. https://github.com/nexB/conan Maintained by
@pombredanne

e license-expression: This is a library to parse, analyze, compare and normalize SPDX-like license expressions us-
ing a boolean logic expression engine. See https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
to understand what a license expression is. See https://github.com/nexB/license-expression for the code. The un-
derlying boolean engine is at https://github.com/bastikr/boolean.py . Both are co-maintained by @pombredanne

157

https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-workbench
https://github.com/nexB/aboutcode-manager
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/aboutcode-toolkit
https://github.com/nexB/tracecode-toolkit
https://github.com/strace/strace/
https://github.com/nexB/conan
https://github.com/nexB/conan
https://github.com/nexB/license-expression/
https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
https://github.com/nexB/license-expression
https://github.com/bastikr/boolean.py

AboutCode

e ABCD aka AboutCode Data: is a simple set of conventions to define data structures that all the AboutCode tools
can understand and use to exchange data. The specification lives in this repository. .ABOUT files and ScanCode
tooklit data are examples of this approach. Other projects such as https://libraries.io and OSS Review Toolkit
also use these conventions.

¢ DeltaCode is a command line tool to compare scans and determine if and where there are material differences
that affect licensing. The lead maintainer is @majurg

* VulnerableCode: an emerging server-side application to collect and track known package vulnerabilities.

2.2 License

AboutCode includes documents that are dedicated to the Public Domain using the Creative Commons CCO 1.0 Uni-
versal (CCO 1.0) Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0/

2.3 Document Maintenance

2.3.1 Document Software Setup

AboutCode documentation is built using Sphinx. See http://www.sphinx-doc.org/en/master/index.html
AboutCode documentation is distributed using “Read the Docs”. See https://readthedocs.org/

Individual document files are in reStructuredText format. See http://www.sphinx-doc.org/en/master/usage/
restructuredtext/basics.html

You create, build, and preview AboutCode documentation on your local machine.

You commit your updates to the AboutCode repository on GitHub, which triggers an automatic rebuild of https:
/laboutcode.readthedocs.io/en/latest/index.html

2.3.2 Clone AboutCode

To get started, create or identify a working directory on your local machine.

Open that directory and execute the following command in a terminal session:

git clone https://github.com/nexB/aboutcode.git

That will create an /aboutcode directory in your working directory. Now you can install the dependencies in a vir-
tualenv:

cd aboutcode
virtualenv -p /usr/bin/python3.6 docs-venv
source bin/activate

Now you can install Sphinx and the format theme used by readthedocs:

pip install Sphinx sphinx_rtd_theme doc8

Now you can build the HTML documents locally:

cd docs
make html

158 Chapter 2. Documentation Guide

https://github.com/AyanSinhaMahapatra/aboutcode/blob/master/docs/source/aboutcode-data/abcd.rst
https://libraries.io
https://github.com/heremaps/oss-review-toolkit
https://github.com/nexB/deltacode
https://github.com/nexB/vulnerablecode
http://creativecommons.org/publicdomain/zero/1.0/
http://www.sphinx-doc.org/en/master/index.html
https://readthedocs.org/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://aboutcode.readthedocs.io/en/latest/index.html
https://aboutcode.readthedocs.io/en/latest/index.html

AboutCode

Assuming that your Sphinx installation was successful, Sphinx should build a local instance of the documentation
.html files:

’open build/html/index.html

In case this command did not work, for example on Ubuntu 18.04 you may get a message like “Couldn’t get a file
descriptor referring to the console”, try:

’see build/html/index.html

You now have a local build of the AboutCode documents.

2.3.3 Improve AboutCode Documents

Before you begin creating and modifying AboutCode documents, be sure that you understand the basics of reStruc-
turedText as explained at http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Ensure that you have the latest AboutCode files:

git pull
git status

Use your favorite text editor to create and modify .rst files to make your documentation improvements.

Review your work:

cd docs
make html
open build/html/index.html

AboutCode uses Travis-CI to test build status and check links, so run this script at your local system before creating a
Pull Request.

cd docs
./scripts/sphinx_build_link_check.sh

2.3.4 Share AboutCode Document Improvements

Follow standard git procedures to upload your new and modified files. The following commands are examples:

git status

git add source/index.rst

git add source/how-to-scan.rst

git status

git commit -m "New how-to document that explains how to scan"
git status

git push

git status

The AboutCode webhook with ReadTheDocs should rebuild the documentation. You can review your results online.

2.3. Document Maintenance 159

http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

AboutCode

160 Chapter 2. Documentation Guide

CHAPTER 3

Tutorial Documents

161

AboutCode

162 Chapter 3. Tutorial Documents

CHAPTER 4

How-To Documents

163

AboutCode

164 Chapter 4. How-To Documents

CHAPTER B

Reference Documents

165

AboutCode

166 Chapter 5. Reference Documents

CHAPTER O

Discussion Documents

167

AboutCode

168 Chapter 6. Discussion Documents

CHAPTER /

Indices and Tables

* genindex

¢ modindex

169

	Aboutcode Projects
	Documentation Guide
	Tutorial Documents
	How-To Documents
	Reference Documents
	Discussion Documents
	Indices and Tables

