

AboutCode Documentation

Aboutcode Projects

	ScanCode-Toolkit Documentation

	Scancode-Workbench Documentation

	Deltacode Documentation

	AboutCode Docs

	AboutCode-Toolkit Documentation

	AboutCode Data : ABCD

Documentation Guide

	Help
	AboutCode Projects

	License

	Document Maintenance
	Document Software Setup

	Clone AboutCode

	Improve AboutCode Documents

	Share AboutCode Document Improvements

Tutorial Documents

	Basic Tutorials
	How to Run a Scan

	How to Visualize Scan results

	How To Extract Archives

	How to specify Scancode Output Format

	How to set what will be detected in Scan

How-To Documents

	How-To Guides
	How To Add a New License for Detection

	How to Add New License Rules for Enhanced Detection

Reference Documents

	Command Line Interface Reference
	Synopsis

	Getting Help from the Command Line

	All Available Options

	How to Run a Scan

	Basic Options

	Core Options

	Scancode Output Formats

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

Discussion Documents

	How it all Works
	Overview

Indices and Tables

	Index

	Module Index

ScanCode-Toolkit Documentation

	Getting Started
	Home

	Comprehensive Installation

	IDE Configuration

	Documentation

	What’s New in This Release?

	Command Line Interface Reference
	Synopsis

	Getting Help from the Command Line

	All Available Options

	How to Run a Scan

	Basic Options

	Core Options

	Scancode Output Formats

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

	Basic Tutorials
	How to Run a Scan

	How to Visualize Scan results

	How To Extract Archives

	How to specify Scancode Output Format

	How to set what will be detected in Scan

	How-To Guides
	How To Add a New License for Detection

	How to Add New License Rules for Enhanced Detection

	How it all Works
	Overview

	Contribute
	Contributing to Code Development

	How to cut a new release:

	Contributing to the Documentation

	Roadmap

	Google Summer of Code 2017 - Final report

	Miscellaneous
	FAQ

	Support

	Runtime Performance Reports

	Plugin Architecture

	License Policy Plugin

Getting Started

	Home
	Why ScanCode?

	What does ScanCode Toolkit do?

	How does it work?

	Alternatives?

	History

	Other Important Documentation

	Comprehensive Installation
	System Requirements

	Prerequisites

	Do not use Unicode, non-ASCII in your installation Path

	Installation on Linux and Mac

	Installation on Windows

	Un-installation

	IDE Configuration
	PyCharm

	Visual Studio Code

	Documentation
	Documentation

	Contribute to Docs

	Google Summer of Docs

	What’s New in This Release?
	Quick Summary

	Main New Features

	Brief Summary Of Changes

	Explanations

Home

ScanCode is a tool to scan code and detect licenses, copyrights and more.

Why ScanCode?

Discovering the origin and license for a software component is important, but it is often much
harder to accomplish than it should be because:

	A typical software project may reuse tens or hundreds of third-party software components

	Software authors do not always provide copyright and license information

	Copyright and license information that is provided may be hard to find and interpret

ScanCode tries to address this issue by offering:

	A comprehensive code scanner that can detect origin or license information inside codebase files

	A simple command line approach that runs on Windows, Linux, and Mac

	Your choice of JSON or other output formats (SPDX, HTML, CSV) for integration with other tools

	ScanCode workbench for Visualization

	Well-tested, easy to hack, and well-documented code

	Release of the code and reference data under attribution licenses (Apache 2.0 and CC-BY-1.0)

	Plugin System for easily adding new Functionality to Scans.

	Python 3 Unicode Capabilities for better supporting users from 100+ languages.

	Extensive Documentation Support.

What does ScanCode Toolkit do?

ScanCode finds the origin history information that is in your codebase with a focus on:

	Copyright and other origin clues (emails, urls, authors etc)

	License notices and license text with reference information about detected licenses.

Using this data you can:

	Discover the origin and license of the open source and third-party software
components that you use,

	Create a software component Inventory for your codebase, and

	Use this data to comply with open source license obligations such as attribution
and redistribution.

How does it work?

Given a codebase in a directory, ScanCode will:

	Collect an inventory of the code files and classify the code using file types

	Extract files from any archive using a general purpose extractor

	Extract texts from binary files if needed

	Use an extensible rules engine to detect open source license text and notices

	Use a specialized parser to capture copyright statements

	Identify packaged code and collect metadata from packages

	Report the results in the formats of your choice (JSON, SPDX, etc.) for integration with
other tools

	Browse the results using the ScanCode Workbench [https://github.com/nexB/scancode-workbench]
companion app to assist your analysis.

ScanCode should enable you to identify the “easy” cases on your own, but a software development
team will probably need to build internal expertise or use outside experts (like nexB) in
many cases.

ScanCode is written in Python and also uses other open source packages.

Alternatives?

There are several utilities that do some of what ScanCode does - e.g. You can grep files for
copyright and license text. This may work well for simple cases - e.g. at the single file level,
but we created ScanCode for ourselves because this approach does not help you to see the
recurring patterns of licenses and other origin history clues.

Or you can consider other tools such as:

	FOSSology (open source, written in C, Linux only, GPL-licensed)

	Ninka (open source, written in Perl, GPL-licensed)

	Commercially-licensed tools, most of them written in Java

History

ScanCode was originally created by nexB to support our software audit consulting services. We have
used and continuously enhanced the underlying toolkit for six years. We decided to release
ScanCode as open source software to give software development teams the opportunity to perform
as much of the software audit function as they like on their own.

If you have questions or are interested in nexB-provided training or support for ScanCode, please
send us a note at info@scancode.io or visit http://www.nexb.com/.

We are part of nexB Inc. and most of us are located in the San Francisco Bay Area. Our mission is
to provide the tools and services that enable and accelerate component-based software development.
Reusing software components is essential for the efficient delivery of software products and
systems in every industry.

Thank you for giving ScanCode a try!

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Comprehensive Installation

ScanCode requires Python 2.7.x and is tested on Linux, Mac, and Windows. Make sure Python 2.7
is installed first.

System Requirements

	Hardware : ScanCode will run best with a modern X86 processor and at least 2GB of RAM and
250MB of disk.

	Supported operating systems : ScanCode should run on these OSes:

	Linux: on most recent 64-bit Linux distributions (32-bit distros are
only partially supported),

	Mac: on recent Mac OSX (10.6.8 and up),

	Windows: on Windows 7 and up (32- or 64-bit) using a 32-bit Python.

Prerequisites

ScanCode needs a Python 2.7 interpreter.

	On Linux: Use your package manager to install python2.7. If Python 2.7 is not available from
your package manager, you must compile it from sources. For instance, visit
https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6 for instructions
to compile Python from sources on Centos.

	On Ubuntu 12.04, 14.04 and 16.04, you will need to install these packages first:
python-dev bzip2 xz-utils zlib1g libxml2-dev libxslt1-dev

	On Debian and Debian-based distros you will need to install these packages first:
python-dev libbz2-1.0 xz-utils zlib1g libxml2-dev libxslt1-dev

	On RPM-based distros, you will need to install these packages first:
python-devel zlib bzip2-libs xz-libs libxml2-devel libxslt-devel

	On Windows:

Use the Python 2.7 32-bit (e.g. The Windows x86 MSI installer) for X86 regardless of whether
you run Windows on 32-bit or 64-bit. DO NOT USE Python X86_64 installer even if you run 64 bit
Windows. Download Python from this url:
https://www.python.org/ftp/python/2.7.13/python-2.7.13.msi

Install Python on the c: drive and use all default installer options (scancode will try to find
python just in c:python27python.exe). See the Windows installation section for more
installation details.

	On Mac: Download and install Python from this url:
https://www.python.org/ftp/python/2.7.13/python-2.7.13-macosx10.6.pkg

Do not use Unicode, non-ASCII in your installation Path

There is a bug in underlying libraries that prevent this.

Installation on Linux and Mac

Download and extract the latest ScanCode release from:
https://github.com/nexB/scancode-toolkit/releases/

Open a terminal in the extracted directory and run:

./scancode --help

This will configure ScanCode and display the command line help.

Installation on Windows

	Download the latest ScanCode release zip file from
https://github.com/nexB/scancode-toolkit/releases/

	In Windows Explorer (called File Explorer on Windows 10), select the downloaded ScanCode zip
and right-click.

	In the pop-up menu select ‘Extract All…’

	In the pop-up window ‘Extract zip folders’ (‘Extract Compressed (Zipped) Folders’ on Windows 10)
use the default options to extract.

	Once the extraction is complete, a new Windows Explorer/File Explorer window will pop up.

	In this Explorer window, select the new folder that was created and right-click.

Note

On Windows 10, double-click the new folder, select one of the files inside the folder
(e.g., ‘setup.py’), and right-click.

	In the pop-up menu select ‘Properties’.

	In the pop-up window ‘Properties’, select the Location value. Copy this to the clipboard and
close the ‘Properties’ window.

	Press the start menu button (On Windows 10, click the search box or search icon in the taskbar.)

	In the search box type:

cmd

	Select ‘cmd.exe’ listed in the search results.
(On Windows 10, you may see ‘Command Prompt’ instead – select that.)

	A new ‘cmd.exe’ window (‘Command Prompt’ on Windows 10) pops up.

	In this window (aka a ‘command prompt’), type the following (i.e., ‘cd’ followed by a space):

cd

	Right-click in this window and select Paste.
This will paste the path where you extracted ScanCode.

	Press Enter.

	This will change the current location of your command prompt to the root directory where
ScanCode is installed.

	Then type:

scancode -h

	Press enter. This will configure your ScanCode installation.

	Several messages are displayed followed by the scancode command help.

	The installation is complete.

Un-installation

	Delete the directory in which you extracted ScanCode.

	Delete any temporary files created in your system temp directory under a ScanCode directory.

IDE Configuration

The instructions below assume that you followed the Contributing to Code Development including a python
virtualenv.

PyCharm

Open the settings dialog and navigate to “Project Interpreter”. Click on the gear button in the
upper left corner and select “Add Local”. Find the python binary in the virtualenv
(bin/python in the repository root) and confirm. Open a file that contains tests and set a
breakpoint. Right click in the test and select “Debug <name of test>”. Afterwards you can re-run
the same test in the debugger using the appropriate keyboard shortcut (e.g. Shift-F9, depending
on platform and configured layout).

Visual Studio Code

Install the Python extension from Microsoft [https://marketplace.visualstudio.com/items?itemName=ms-python.python].

The configure script should have created a VSCode workspace directory with a basic
settings.json. To do this manually, add to or create the workspace settings file
.vscode/settings.json:

"python.pythonPath": "${workspaceRoot}/bin/python",
"python.unitTest.pyTestEnabled": true

If you created the file, also add { and } on the first and last line respectively.

When you open the project root folder in VSCode, the status bar should show the correct python
interpreter and, after a while, a “Run Tests” button. If not, try restarting VSCode.

Open a file that contains tests (e.g. tests/cluecode/test_copyrights.py). Above the test
functions you should now see “Run Test” and “Debug Test”. Set a breakpoint in a test function
and click on “Debug Test” above it. The debugger panel should show up on the left and show the
program state at the breakpoint. Stepping over and into code seems not to work. Clicking one of
those buttons just runs the test to completion. As a workaround, navigate to the function you want
to step into, set another breakpoint and click on “continue” instead.

Documentation

This page provides an index of current ScanCode user documentation.

Documentation

The ScanCode toolkit documentation lives at aboutcode.readthedocs.io/en/latest/scancode-toolkit/.

Contribute to Docs

See Contributing to the Documentation for more details.

Google Summer of Docs

See Google Season of Docs 2019 for more details.

What’s New in This Release?

A new release of Scancode-Toolkit is here!

Quick Summary

	Version - 3.1.1

	Tag - “v.3.1.1”

	Date - 5th September 2019

	Type - Pre-Release

	Comments - Release v3.1.1 which the release candidate 2 of 3.1.x

Main New Features

This is the first 3.1 release with the best, fastest and most efficient ScanCode ever released.

This release contains many improvements, fixes and new features including breaking API changes (when compared to 2.2.x). See the CHANGELOG [https://github.com/nexB/scancode-toolkit/blob/master/CHANGELOG.rst] for details.

This release also comes with a Full Documentation hosted at
aboutcode.readthedocs.io/en/latest/scancode-toolkit/.

To install, download scancode-toolkit-3.1.1.zip or scancode-toolkit-3.1.1.tar.bz2 from the Downloads section below and follow installation instructions in the README [https://github.com/nexB/scancode-toolkit/blob/master/README.rst].

This is also available as a Python library from Pypi with pip install scancode-toolkit.

You can also download the corresponding source code for bundled pre-built third-party binaries from
these locations:

	https://github.com/nexB/scancode-thirdparty-src/archive/v1.0.0.tar.gz

	https://github.com/nexB/scancode-thirdparty-src/archive/v1.0.0.zip

Brief Summary Of Changes

Documentation Support

pip install

Python 3 Support

Explanations

Command Line Interface Reference

	Synopsis
	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

	Getting Help from the Command Line
	All Documentation/Help Options

	Help text

	Command Examples Text

	Plugins Help Text

	--list-packages Option

	--print-options Option

	All Available Options
	All “Basic” Scan Options

	All Extractcode Options

	All “Core” Scan Options

	All Scan Output Options

	All “Output Control” Scan Options

	All “Pre-Scan” Options

	All “Post-Scan” Options

	How to Run a Scan
	Setting up a Virtual Environment

	Setting up Scancode Toolkit

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	Basic Options
	All “Basic” Scan Options

	--generated Options

	--max-email Options

	--max-url Options

	--license-score Options

	--license-text Options

	--license-url-template Options

	--license-text-diagnostics Options

	Core Options
	All “Core” Scan Options

	Comparing Progress Message Options

	--timeout Option

	--reindex-licenses Option

	--from-json Option

	--max-in-memory Option

	Scancode Output Formats
	All Scan Output Options

	--json FILE

	--json-pp FILE

	--json-lines FILE

	Comparing Different json Output Formats

	--spdx-rdf FILE

	--spdx-tv FILE

	--html FILE

	--html-app FILE

	--csv FILE

	Custom Output Format

	Controlling Scancode Output and Filters
	All “Output Control” Scan Options

	--strip-root Vs. --full-root

	--ignore-author <pattern> Option

	--ignore-copyright-holder <pattern> Option

	--only-findings Plugin

	Pre-Scan Options
	All “Pre-Scan” Options

	--ignore Option

	--include Option

	--classify

	--facet Option

	Glob Pattern Matching

	What is a Facet?

	Post-Scan Options
	All “Post-Scan” Options

	--mark-source Option

	--consolidate Option

	--filter-clues Option

	--is-license-text Option

	--license-clarity-score Option

	--license-policy FILE Option

	--summary Option

	--summary-by-facet Option

	--summary-key-files Option

	--summary-with-details Option

Synopsis

ScanCode detects licenses, copyrights, package manifests and direct dependencies and more, both
in source code and binary files, by scanning the files. This page introduces you to the ScanCode
Toolkit Command Line Interface in the following sections:

	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

Quickstart

The basic usage is:

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

To scan the samples directory, the command will be:

path/to/scancode -clpieu --json-pp path/to/output.json path/to/samples

Note

The <OUTPUT FORMAT OPTION(s)> includes both the output option and output file name.
For example in ./scancode -clpieu --json-pp output.json samples,
--json-pp output.json is <OUTPUT FORMAT OPTION(s)>.

Tip

On Windows use scancode instead of path/to/scancode.

Warning

There isn’t a “Default” output option in Versions 3.x onwards, you have to
specify <OUTPUT FORMAT OPTION(s)> explicitly.

Alternatively, instead of using path/to/scancode (the path from root of file system) we can
go into the scancode directory (like scancode-toolkit-3.1.1) and then use ./scancode.
The same applies for input and output options. To scan a folder samples inside ScanCode
directory, and output to a file output.json in the same directory, the command will be:

./scancode -clpieu --json-pp output.json samples

While a scan using absolute paths from the file system root will look like:

home/ayansm/software/scancode-toolkit-3.1.1/scancode -clpieu --json-pp home/ayansm/scan_scan_results/output.json home/ayansm/codebases/samples/

Throughout the documentation ./scancode --clpieu --json-pp output.json samples will be used
as am example when the terminal is at scancode-toolkit-3.1.1 and we are scanning the
default samples folder distributed with Scancode-Toolkit.

Scans the <SCAN INPUT> file or directory for license, origin and packages and saves results to
FILE(s) using one or more output format option. Error and progress are printed to stdout.

Type of Options

ScanCode Toolkit Command Line options can be divided into these major sections:

	All “Basic” Scan Options

	Extractcode Options

	All “Core” Scan Options

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

Output Formats

The output file format is set by using the various output options. The default output format
is JSON, the entire file being in one line, without whitespace characters.

The following example scans will show you how to run a scan with each of the result formats. For
the scans, we will use the samples directory provided with the ScanCode Toolkit.

JSON file output

Scan the samples directory and save the scan to a JSON file::

./scancode -clpieu --json-pp output.json samples

A sample JSON output file structure will look like:

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 ...
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 ...
 ...
 ...
 {
 "path": "samples/zlib/iostream2/zstream_test.cpp",
 "type": "file",
 "name": "zstream_test.cpp",
 "base_name": "zstream_test",
 "extension": ".cpp",
 "size": 711,
 "date": "2019-02-12",
 ...
 ...
 ...
 "scan_errors": []
 }
]
}

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "licenses": [
 {
 "key": "mit-old-style",
 "score": 100.0,
 "name": "MIT Old Style",
 "short_name": "MIT Old Style",
 "category": "Permissive",
 "is_exception": false,
 "owner": "MIT",
 "homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style",
 "spdx_license_key": null,
 "spdx_url": "",
 "start_line": 9,
 "end_line": 15,
 "matched_rule": {
 "identifier": "mit-old-style_cmr-no_1.RULE",
 "license_expression": "mit-old-style",
 "licenses": [
 "mit-old-style"
],
 "is_license_text": true,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": false,
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
 "license_expressions": [
 "mit-old-style"
],
 "copyrights": [
 {
 "value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "value": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

Static HTML output

Scan the samples directory for licenses and copyrights and save the scan results to an HTML
file. When the scan is done, open samples.html in your web browser.

./scancode -clpieu --html output.html samples

[image: ../../_images/scancode-toolkit-static-html1.png]
[image: ../../_images/scancode-toolkit-static-html2.png]

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Getting Help from the Command Line

ScanCode-Toolkit Command Line Interface can help you to search for specific options or use cases
from the command line itself. These are two options are --help and --examples, and are
very helpful if you need a quick glance of the options or use cases. Or it can be useful when you
can’t access, the more elaborate online documentation.

All Documentation/Help Options

	-h, --help

	Show the Help text and exit.

	--examples

	Show the Command Examples Text and exit.

	--about

	Show information about ScanCode and licensing
and exit.

	--version

	Show the version and exit.

	--list-packages

	Show the list of supported package types and exit.

	--plugins

	Show the list of available ScanCode plugins and exit.

	--print-options

	Show the list of selected options and exit.

Help text

The Scancode-Toolkit Command Line Interface has a Help option displaying all the options. It also
displays basic usage, and some simple examples. The command line option for this is --help.

Tip

You can also use the shorter -h option, which does the same.

For Linux based systems the full command is:

$./scancode --help

And for windows, it will be like:

$ scancode --help

Note

Make sure you are in the Scancode Root Directory before carrying out this command. After
extracting the .zip or .tar.bz file, the folder for Scancode-Toolkit version 3.1.1
will be named like “scancode-toolkit-3.1.1”.

The Following Help Text is displayed, i.e. This is the help text for Scancode Version 3.1.1

Usage: scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <input>...

scan the <input> file or directory for license, origin and packages
and save results to FILE(s) using one or more output format option.

Error and progress are printed to stderr.

Options:

primary scans:
 -l, --license Scan <input> for licenses.
 -p, --package Scan <input> for package manifests and packages.
 -c, --copyright Scan <input> for copyrights.

other scans:
 -i, --info Scan <input> for file information (size, checksums, etc).
 --generated Classify automatically generated code files with a flag.
 -e, --email Scan <input> for emails.
 -u, --url Scan <input> for urls.

scan options:
 --license-score INTEGER Do not return license matches with a
 score lower than this score. A number
 between 0 and 100. [default: 0]
 --license-text Include the detected licenses matched
 text.
 --license-text-diagnostics In the matched license text, include
 diagnostic highlights surrounding with
 square brackets [] words that are not
 matched.
 --license-url-template TEXT Set the template URL used for the license
 reference URLs. Curly braces ({}) are
 replaced by the license key. [default: h
 ttps://enterprise.dejacode.com/urn/urn:dj
 e:license:{}]
 --max-email INT Report only up to INT emails found in a
 file. Use 0 for no limit. [default: 50]
 --max-url INT Report only up to INT urls found in a
 file. Use 0 for no limit. [default: 50]

output formats:
 --json FILE Write scan output as compact JSON to FILE.
 --json-pp FILE Write scan output as pretty-printed JSON to
 FILE.
 --json-lines FILE Write scan output as JSON Lines to FILE.
 --csv FILE Write scan output as CSV to FILE.
 --html FILE Write scan output as HTML to FILE.
 --custom-output FILE Write scan output to FILE formatted with the
 custom Jinja template file.
 --custom-template FILE Use this Jinja template FILE as a custom
 template.
 --spdx-rdf FILE Write scan output as SPDX RDF to FILE.
 --spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.
 --html-app FILE (DEPRECATED: use the ScanCode Workbench app
 instead) Write scan output as a mini HTML
 application to FILE.

output filters:
 --ignore-author <pattern> Ignore a file (and all its findings)
 if an author contains a match to the
 <pattern> regular expression. Note
 that this will ignore a file even if
 it has other findings such as a
 license or errors.
 --ignore-copyright-holder <pattern>
 Ignore a file (and all its findings)
 if a copyright holder contains a match
 to the <pattern> regular expression.
 Note that this will ignore a file even
 if it has other scanned data such as a
 license or errors.
 --only-findings Only return files or directories with
 findings for the requested scans.
 Files and directories without findings
 are omitted (file information is not
 treated as findings).

output control:
 --full-root Report full, absolute paths.
 --strip-root Strip the root directory segment of all paths. The
 default is to always include the last directory segment
 of the scanned path such that all paths have a common
 root directory.

pre-scan:
 --ignore <pattern> Ignore files matching <pattern>.
 --include <pattern> Include files matching <pattern>.
 --classify Classify files with flags telling if the
 file is a legal, or readme or test file,
 etc.
 --facet <facet>=<pattern> Add the <facet> to files with a path
 matching <pattern>.

post-scan:
 --consolidate Group resources by Packages or license and
 copyright holder and return those groupings
 as a list of consolidated packages and a list
 of consolidated components. This requires the
 scan to have/be run with the copyright,
 license, and package options active
 --filter-clues Filter redundant duplicated clues already
 contained in detected license and copyright
 texts and notices.
 --is-license-text Set the "is_license_text" flag to true for
 files that contain mostly license texts and
 notices (e.g over 90% of the content).
 [EXPERIMENTAL]
 --license-clarity-score Compute a summary license clarity score at
 the codebase level.
 --license-policy FILE Load a License Policy file and apply it to
 the scan at the Resource level.
 --mark-source Set the "is_source" to true for directories
 that contain over 90% of source files as
 children and descendants. Count the number of
 source files in a directory as a new
 source_file_counts attribute
 --summary Summarize license, copyright and other scans
 at the codebase level.
 --summary-by-facet Summarize license, copyright and other scans
 and group the results by facet.
 --summary-key-files Summarize license, copyright and other scans
 for key, top-level files. Key files are top-
 level codebase files such as COPYING, README
 and package manifests as reported by the
 --classify option "is_legal", "is_readme",
 "is_manifest" and "is_top_level" flags.
 --summary-with-details Summarize license, copyright and other scans
 at the codebase level, keeping intermediate
 details at the file and directory level.

core:
 --timeout <secs> Stop an unfinished file scan after a timeout
 in seconds. [default: 120 seconds]
 -n, --processes INT Set the number of parallel processes to use.
 Disable parallel processing if 0. Also
 disable threading if -1. [default: 1]
 --quiet Do not print summary or progress.
 --verbose Print progress as file-by-file path instead
 of a progress bar. Print verbose scan
 counters.
 --from-json Load codebase from an existing JSON scan
 --max-in-memory INTEGER Maximum number of files and directories scan
 details kept in memory during a scan.
 Additional files and directories scan details
 above this number are cached on-disk rather
 than in memory. Use 0 to use unlimited memory
 and disable on-disk caching. Use -1 to use
 only on-disk caching. [default: 10000]

miscellaneous:
 --reindex-licenses Check the license index cache and reindex if
 needed and exit.

documentation:
 -h, --help Show this message and exit.
 --about Show information about ScanCode and licensing and
 exit.
 --version Show the version and exit.
 --examples Show command examples and exit.
 --list-packages Show the list of supported package types and exit.
 --plugins Show the list of available ScanCode plugins and exit.
 --print-options Show the list of selected options and exit.

Examples (use --examples for more):

Scan the 'samples' directory for licenses and copyrights.
Save scan results to the 'scancode_result.json' JSON file:

 scancode --license --copyright --json-pp scancode_result.json
 samples

Scan the 'samples' directory for licenses and package manifests. Print scan
results on screen as pretty-formatted JSON (using the special '-' FILE to print
to on screen/to stdout):

 scancode --json-pp - --license --package samples

Note: when you run scancode, a progress bar is displayed with a
counter of the number of files processed. Use --verbose to display
file-by-file progress.

Command Examples Text

The Scancode-Toolkit Command Line Interface has an --examples option which displays some basic
examples (more than the basic synopsis in --help). These examples include the following aspects
of code scanning:

	Scanning Single File/Directory

	Output Scan results to stdout (as JSON) or HTML/JSON file

	Scanning for only Copyrights/Licenses

	Ignoring Files

	Using GLOB Patterns to Scan Multiple Files

	Using Verbose Mode

The command line option for displaying these basic examples is --examples.

For Linux based systems the full command is:

$./scancode --examples

And for windows, it will be like:

$ scancode --examples

The Following Text is displayed, i.e. This is the examples for Scancode Version 3.1.1

Scancode command lines examples:

(Note for Windows: use '\' back slash instead of '/' forward slash for paths.)

Scan a single file for copyrights. Print scan results to stdout as pretty JSON:

 scancode --copyright samples/zlib/zlib.h --json-pp -

Scan a single file for licenses, print verbose progress to stderr as each
file is scanned. Save scan to a JSON file:

 scancode --license --verbose samples/zlib/zlib.h --json licenses.json

Scan a directory explicitly for licenses and copyrights. Redirect JSON scan
results to a file:

 scancode --license --copyright samples/zlib/ --json - > scan.json

Scan a directory while ignoring a single file. Scan for license, copyright and
package manifests. Use four parallel processes.
Print scan results to stdout as pretty formatted JSON.

 scancode -lc --package --ignore README --processes 4 --json-pp - samples/

Scan a directory while ignoring all files with .txt extension.
Print scan results to stdout as pretty formatted JSON.
It is recommended to use quotes around glob patterns to prevent pattern
expansion by the shell:

 scancode --json-pp - --ignore "*.txt" samples/

Special characters supported in GLOB pattern:
- * matches everything
- ? matches any single character
- [seq] matches any character in seq
- [!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets.
For example, '[?]' matches the character '?'.
For details on GLOB patterns see https://en.wikipedia.org/wiki/Glob_(programming).

Note: Glob patterns cannot be applied to path as strings.
For example, this will not ignore "samples/JGroups/licenses".

 scancode --json - --ignore "samples*licenses" samples/

Scan a directory while ignoring multiple files (or glob patterns).
Print the scan results to stdout as JSON:

 scancode --json - --ignore README --ignore "*.txt" samples/

Scan a directory for licenses and copyrights. Save scan results to an
HTML file:

 scancode --license --copyright --html scancode_result.html samples/zlib

To extract archives, see the 'extractcode' command instead.

Plugins Help Text

The command line option for displaying all the plugins is:

	--plugins

For Linux based systems the full command is:

$./scancode --plugins

And for windows, it will be like:

$ scancode --plugins

Note

Plugins that are shown by using --plugins include the following:

	Post-Scan Plugins

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

The Following Text is displayed, i.e. This is the available plugins for Scancode Version 3.1.1

--
Plugin: scancode_output:csv class: formattedcode.output_csv:CsvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: csv: --csv
 help: Write scan output as CSV to FILE.
 doc: None

--
Plugin: scancode_output:html class: formattedcode.output_html:HtmlOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html: --html
 help: Write scan output as HTML to FILE.
 doc: None

--
Plugin: scancode_output:html-app class: formattedcode.output_html:HtmlAppOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html_app: --html-app
 help: (DEPRECATED: use the ScanCode Workbench app instead) Write scan output as a mini HTML application to FILE.
 doc:
 Write scan output as a mini HTML application.

--
Plugin: scancode_output:json class: formattedcode.output_json:JsonCompactOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json: --json
 help: Write scan output as compact JSON to FILE.
 doc: None

--
Plugin: scancode_output:json-pp class: formattedcode.output_json:JsonPrettyOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_pp: --json-pp
 help: Write scan output as pretty-printed JSON to FILE.
 doc: None

--
Plugin: scancode_output:jsonlines class: formattedcode.output_jsonlines:JsonLinesOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_lines: --json-lines
 help: Write scan output as JSON Lines to FILE.
 doc: None

--
Plugin: scancode_output:spdx-rdf class: formattedcode.output_spdx:SpdxRdfOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_rdf: --spdx-rdf
 help: Write scan output as SPDX RDF to FILE.
 doc: None

--
Plugin: scancode_output:spdx-tv class: formattedcode.output_spdx:SpdxTvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_tv: --spdx-tv
 help: Write scan output as SPDX Tag/Value to FILE.
 doc: None

--
Plugin: scancode_output:template class: formattedcode.output_html:CustomTemplateOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: custom_output: --custom-output
 help: Write scan output to FILE formatted with the custom Jinja template file.
 help_group: output formats, name: custom_template: --custom-template
 help: Use this Jinja template FILE as a custom template.
 doc: None

--
Plugin: scancode_output_filter:ignore-copyrights class: cluecode.plugin_ignore_copyrights:IgnoreCopyrights
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: ignore_copyright_holder: --ignore-copyright-holder
 help: Ignore a file (and all its findings) if a copyright holder contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other scanned data such as a license or errors.
 help_group: output filters, name: ignore_author: --ignore-author
 help: Ignore a file (and all its findings) if an author contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other findings such as a license or errors.
 doc:
 Filter findings that match given copyright holder or author patterns.
 Has no effect unless the --copyright scan is requested.

--
Plugin: scancode_output_filter:only-findings class: scancode.plugin_only_findings:OnlyFindings
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: only_findings: --only-findings
 help: Only return files or directories with findings for the requested scans. Files and directories without findings are omitted (file information is not treated as findings).
 doc:
 Filter files or directories without scan findings for the requested scans.

--
Plugin: scancode_post_scan:classify-package class: summarycode.classify:PackageTopAndKeyFilesTagger
 codebase_attributes:
 resource_attributes:
 sort_order: 0
 required_plugins:
 options:
 doc:
 Tag resources as key or top level based on Package-type specific settings.

--
Plugin: scancode_post_scan:consolidate class: scancode.plugin_consolidate:Consolidator
 codebase_attributes: consolidated_components, consolidated_packages
 resource_attributes: consolidated_to
 sort_order: 8
 required_plugins:
 options:
 help_group: post-scan, name: consolidate: --consolidate
 help: Group resources by Packages or license and copyright holder and return those groupings as a list of consolidated packages and a list of consolidated components. This requires the scan to have/be run with the copyright, license, and package options active
 doc:
 A ScanCode post-scan plugin to return consolidated components and consolidated
 packages for different types of codebase summarization.

 A consolidated component is a group of Resources that have the same origin.
 Currently, consolidated components are created by grouping Resources that have
 the same license expression and copyright holders and the files that contain
 this license expression and copyright holders combination make up 75% or more of
 the files in the directory where they are found.

 A consolidated package is a detected package in the scanned codebase that has
 been enhanced with data about other licenses and holders found within it.

 If a Resource is part of a consolidated component or consolidated package, then
 the identifier of the consolidated component or consolidated package it is part
 of is in the Resource's ``consolidated_to`` field.

--
Plugin: scancode_post_scan:filter-clues class: cluecode.plugin_filter_clues:RedundantCluesFilter
 codebase_attributes:
 resource_attributes:
 sort_order: 1
 required_plugins:
 options:
 help_group: post-scan, name: filter_clues: --filter-clues
 help: Filter redundant duplicated clues already contained in detected license and copyright texts and notices.
 doc:
 Filter redundant clues (copyrights, authors, emails, and urls) that are already
 contained in another more important scan result.

--
Plugin: scancode_post_scan:is-license-text class: licensedcode.plugin_license_text:IsLicenseText
 codebase_attributes:
 resource_attributes: is_license_text
 sort_order: 80
 required_plugins:
 options:
 help_group: post-scan, name: is_license_text: --is-license-text
 help: Set the "is_license_text" flag to true for files that contain mostly license texts and notices (e.g over 90% of the content). [EXPERIMENTAL]
 doc:
 Set the "is_license_text" flag to true for at the file level for text files
 that contain mostly (as 90% of their size) license texts or notices.
 Has no effect unless --license, --license-text and --info scan data
 are available.

--
Plugin: scancode_post_scan:license-clarity-score class: summarycode.score:LicenseClarityScore
 codebase_attributes: license_clarity_score
 resource_attributes:
 sort_order: 110
 required_plugins:
 options:
 help_group: post-scan, name: license_clarity_score: --license-clarity-score
 help: Compute a summary license clarity score at the codebase level.
 doc:
 Compute a License clarity score at the codebase level.

--
Plugin: scancode_post_scan:license-policy class: licensedcode.plugin_license_policy:LicensePolicy
 codebase_attributes:
 resource_attributes: license_policy
 sort_order: 9
 required_plugins:
 options:
 help_group: post-scan, name: license_policy: --license-policy
 help: Load a License Policy file and apply it to the scan at the Resource level.
 doc:
 Add the "license_policy" attribute to a resouce if it contains a
 detected license key that is found in the license_policy.yml file

--
Plugin: scancode_post_scan:mark-source class: scancode.plugin_mark_source:MarkSource
 codebase_attributes:
 resource_attributes: source_count
 sort_order: 8
 required_plugins:
 options:
 help_group: post-scan, name: mark_source: --mark-source
 help: Set the "is_source" to true for directories that contain over 90% of source files as children and descendants. Count the number of source files in a directory as a new source_file_counts attribute
 doc:
 Set the "is_source" flag to true for directories that contain
 over 90% of source files as direct children.
 Has no effect unless the --info scan is requested.

--
Plugin: scancode_post_scan:summary class: summarycode.summarizer:ScanSummary
 codebase_attributes: summary
 resource_attributes:
 sort_order: 10
 required_plugins:
 options:
 help_group: post-scan, name: summary: --summary
 help: Summarize license, copyright and other scans at the codebase level.
 doc:
 Summarize a scan at the codebase level.

--
Plugin: scancode_post_scan:summary-by-facet class: summarycode.summarizer:ScanByFacetSummary
 codebase_attributes: summary_by_facet
 resource_attributes:
 sort_order: 200
 required_plugins:
 options:
 help_group: post-scan, name: summary_by_facet: --summary-by-facet
 help: Summarize license, copyright and other scans and group the results by facet.
 doc:
 Summarize a scan at the codebase level groupping by facets.

--
Plugin: scancode_post_scan:summary-keeping-details class: summarycode.summarizer:ScanSummaryWithDetails
 codebase_attributes: summary
 resource_attributes: summary
 sort_order: 100
 required_plugins:
 options:
 help_group: post-scan, name: summary_with_details: --summary-with-details
 help: Summarize license, copyright and other scans at the codebase level, keeping intermediate details at the file and directory level.
 doc:
 Summarize a scan at the codebase level and keep file and directory details.

--
Plugin: scancode_post_scan:summary-key-files class: summarycode.summarizer:ScanKeyFilesSummary
 codebase_attributes: summary_of_key_files
 resource_attributes:
 sort_order: 150
 required_plugins:
 options:
 help_group: post-scan, name: summary_key_files: --summary-key-files
 help: Summarize license, copyright and other scans for key, top-level files. Key files are top-level codebase files such as COPYING, README and package manifests as reported by the --classify option "is_legal", "is_readme", "is_manifest" and "is_top_level" flags.
 doc:
 Summarize a scan at the codebase level for only key files.

--
Plugin: scancode_pre_scan:classify class: summarycode.classify:FileClassifier
 codebase_attributes:
 resource_attributes: is_legal, is_manifest, is_readme, is_top_level, is_key_file
 sort_order: 50
 required_plugins:
 options:
 help_group: pre-scan, name: classify: --classify
 help: Classify files with flags telling if the file is a legal, or readme or test file, etc.
 doc:
 Classify a file such as a COPYING file or a package manifest with a flag.

--
Plugin: scancode_pre_scan:facet class: summarycode.facet:AddFacet
 codebase_attributes:
 resource_attributes: facets
 sort_order: 20
 required_plugins:
 options:
 help_group: pre-scan, name: facet: --facet
 help: Add the <facet> to files with a path matching <pattern>.
 doc:
 Assign one or more "facet" to each file (and NOT to directories). Facets are
 a way to qualify that some part of the scanned code may be core code vs.
 test vs. data, etc.

--
Plugin: scancode_pre_scan:ignore class: scancode.plugin_ignore:ProcessIgnore
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: pre-scan, name: ignore: --ignore
 help: Ignore files matching <pattern>.
 help_group: pre-scan, name: include: --include
 help: Include files matching <pattern>.
 doc:
 Include or ignore files matching patterns.

--
Plugin: scancode_scan:copyrights class: cluecode.plugin_copyright:CopyrightScanner
 codebase_attributes:
 resource_attributes: copyrights, holders, authors
 sort_order: 4
 required_plugins:
 options:
 help_group: primary scans, name: copyright: -c, --copyright
 help: Scan <input> for copyrights.
 doc:
 Scan a Resource for copyrights.

--
Plugin: scancode_scan:emails class: cluecode.plugin_email:EmailScanner
 codebase_attributes:
 resource_attributes: emails
 sort_order: 8
 required_plugins:
 options:
 help_group: other scans, name: email: -e, --email
 help: Scan <input> for emails.
 help_group: scan options, name: max_email: --max-email
 help: Report only up to INT emails found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for emails.

--
Plugin: scancode_scan:generated class: summarycode.generated:GeneratedCodeDetector
 codebase_attributes:
 resource_attributes: is_generated
 sort_order: 50
 required_plugins:
 options:
 help_group: other scans, name: generated: --generated
 help: Classify automatically generated code files with a flag.
 doc:
 Tag a file as generated.

--
Plugin: scancode_scan:info class: scancode.plugin_info:InfoScanner
 codebase_attributes:
 resource_attributes: date, sha1, md5, mime_type, file_type, programming_language, is_binary, is_text, is_archive, is_media, is_source, is_script
 sort_order: 0
 required_plugins:
 options:
 help_group: other scans, name: info: -i, --info
 help: Scan <input> for file information (size, checksums, etc).
 doc:
 Scan a file Resource for miscellaneous information such as mime/filetype and
 basic checksums.

--
Plugin: scancode_scan:licenses class: licensedcode.plugin_license:LicenseScanner
 codebase_attributes:
 resource_attributes: licenses, license_expressions
 sort_order: 2
 required_plugins:
 options:
 help_group: primary scans, name: license: -l, --license
 help: Scan <input> for licenses.
 help_group: scan options, name: license_score: --license-score
 help: Do not return license matches with a score lower than this score. A number between 0 and 100.
 help_group: scan options, name: license_text: --license-text
 help: Include the detected licenses matched text.
 help_group: scan options, name: license_text_diagnostics: --license-text-diagnostics
 help: In the matched license text, include diagnostic highlights surrounding with square brackets [] words that are not matched.
 help_group: scan options, name: license_url_template: --license-url-template
 help: Set the template URL used for the license reference URLs. Curly braces ({}) are replaced by the license key.
 help_group: scan options, name: license_diag: --license-diag
 help: (DEPRECATED: this is always included by default now). Include diagnostic information in license scan results.
 help_group: miscellaneous, name: reindex_licenses: --reindex-licenses
 help: Check the license index cache and reindex if needed and exit.
 doc:
 Scan a Resource for licenses.

--
Plugin: scancode_scan:packages class: packagedcode.plugin_package:PackageScanner
 codebase_attributes:
 resource_attributes: packages
 sort_order: 6
 required_plugins: scan:licenses
 options:
 help_group: primary scans, name: package: -p, --package
 help: Scan <input> for package manifests and packages.
 help_group: documentation, name: list_packages: --list-packages
 help: Show the list of supported package types and exit.
 doc:
 Scan a Resource for Package manifests and report these as "packages" at the
 right file or directory level.

--
Plugin: scancode_scan:urls class: cluecode.plugin_url:UrlScanner
 codebase_attributes:
 resource_attributes: urls
 sort_order: 10
 required_plugins:
 options:
 help_group: other scans, name: url: -u, --url
 help: Scan <input> for urls.
 help_group: scan options, name: max_url: --max-url
 help: Report only up to INT urls found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for URLs.

--list-packages Option

This shows all the types of packages that can be scanned using Scancode.
These are located in packagedcode i.e. Code used to parse various package formats.

--print-options Option

This option prints the options selected for one specific scan command.

If we run this command:

./scancode -clpieu --json-pp sample.json samples --classify --summary --summary-with-details --print-options

The output will be:

Options:
 classify: True
 copyright: True
 email: True
 info: True
 license: True
 list_packages: None
 output_json_pp: <unopened file 'sample.json' wb>
 package: True
 reindex_licenses: None
 summary: True
 summary_with_details: True
 url: True

All Available Options

This section contains an exhaustive list of all Scancode options, arranged in various sections.
The sections are as follows:

	Basic Scan Options

	Core Scan Options

	Output Formats

	Controlling Output and Filters

	Pre-Scan Options

	Post-Scan Options

There’s also another section for extractcode options.

The order of the sections and all their options is the same as in the :ref:’cli_help_text’,
available in the command line.

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--reindex-licenses

	Force a check and possible reindexing of the
cached license index.

	--from-json

	Load codebase from an existing JSON scan

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--csv FILE

	Write scan output as CSV to FILE.

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	Write scan output as a mini HTML
application to FILE.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--summary-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--summary-by-facet

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of - --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.

Sub-Option of - --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--is-license-text

	Set the “is_license_text” flag to true for
files that contain mostly license texts and
notices (e.g. over 90% of the content).

Sub-Option of - --info and --license-text.

Warning

--is-license-text is an experimental Option.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of - --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize license, copyright and other scans
at the codebase level.

Sub-Options:

	--summary-by-facet

	--summary-key-files

	--summary-with-details

	--summary-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of - --summary and --facet.

	--summary-key-files

	Summarize license, copyright and other scans
for key, top-level files. Key files are top-
level codebase files such as COPYING, README
and package manifests as reported by the
--classify option “is_legal”, “is_readme”,
“is_manifest” and “is_top_level” flags.

Sub-Option of - --classify and --summary.

	--summary-with-details

	Summarize license, copyright and other scans
at the codebase level, keeping intermediate
details at the file and directory level.

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up a Virtual Environment

Scancode Toolkit 3.1.1 and Workbench 3.1.0 is not compatible with python 3.x so we will create a
virtual environment [https://docs.python-guide.org/dev/virtualenvs/] using the Virtualenv
tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan3.1.1:

virtualenv -p /usr/bin/python2.7 venv-scan3.1.1
source venv-scan3.1.1/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 3.1.1 tarball or .zip archive from the
Toolkit GitHub Release [https://github.com/nexB/scancode-toolkit/releases/tag/v3.1.1] Page under
assets options. Download and extract the Archive from command line:

For .zip archive:

unzip scancode-toolkit-3.1.1.zip

For .tar.bz2 archive:

tar -xvf scancode-toolkit-3.1.1.tar.bz2

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted
directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

Note

--shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The Basic Scan options, i.e. -c, -l, -p, -e, -u, and -i are to be
decided, according to your requirements. If you do not need one specific type of information
(say, licenses), consider removing it, because the more things you scan for, longer it will take
for the scan to complete.

Note

You have to select these options explicitly, as they are not default anymore from
versions 3.x, unlike earlier versions having -clp as default.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip a file taking a lot of time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

./scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Basic Options

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

--generated Options

The --generated option classifies automatically generated code files with a flag.

An example of using --generated in a scan:

./scancode -clpieu --json-pp output.json samples --generated

In the results, for each file the following attribute is added with it’s corresponding
true/false value

"is_generated": true

In the samples folder, the following files have a true value for their is_generated attribute:

"samples/zlib/dotzlib/LICENSE_1_0.txt"
"samples/JGroups/licenses/apache-2.0.txt"

--max-email Options

Dependency

The option --max-email is a sub-option of and requires the option --email.

If in the files that are scanned, in individual files, there are a lot of emails (i.e lists) which
are unnecessary and clutter the scan results, --max-email option can be used to report emails
only up to a limit in individual files.

Some important INTEGER values of the --max-email INTEGER option:

	0 - No limit, include all emails.

	50 - Default.

An example usage:

./scancode -clpieu --json-pp output.json samples --max-email 5

This only reports 5 email addresses per file and ignores the rest.

--max-url Options

Dependency

The option --max-url is a sub-option of and requires the option --url.

If in the files that are scanned, in individual files, there are a lot of links to other websites
(i.e url lists) which are unnecessary and clutter the scan results, --max-url option can be
used to report urls only up to a limit in individual files.

Some important INTEGER values of the --max-url INTEGER option:

	0 - No limit, include all urls.

	50 - Default.

An example usage:

./scancode -clpieu --json-pp output.json samples --max-url 10

This only reports 10 urls per file and ignores the rest.

--license-score Options

Dependency

The option --license-score is a sub-option of and requires the option --license.

License matching strictness, i.e. How closely matched licenses are detected in a scan, can be
modified by using this --license-score option.

Some important INTEGER values of the --license-score INTEGER option:

	0 - Default and Lowest Value, All matches are reported.

	100 - Highest Value, Only licenses with a much better match are reported

Here, a bigger number means a better match, i.e. Setting a higher license score translates to a
higher threshold for matching licenses (with equal or less number of license matches).

An example usage:

./scancode -clpieu --json-pp output.json samples --license-score 70

Here’s the license results on setting the integer value to 100, Vs. the default value 0. This is
visualized using ScanCode workbench in the License Info Dashboard.

License scan results of Samples Directory.

	
[image: ../../_images/core_lic_score_0.png]
License Score 0 (Default).

	
[image: ../../_images/core_lic_score_100.png]
License Score 100.

--license-text Options

Dependency

The option --license-text is a sub-option of and requires the option --license.

Sub-Option

The option --license-text-diagnostics and --is-license-text are sub-options of
--license-text. --is-license-text is a Post-Scan Option.

With the --license-text option, the scan results attribute “matched text” includes the matched text
for the detected license.

An example Scan:

./scancode -cplieu --json-pp output.json samples --license-text

An example matched text included in the results is as follows:

"matched_text":
 " This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu"

	The file in which this license was detected: samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h

	License name: “ZLIB License”

--license-url-template Options

Dependency

The option --license-url-template is a sub-option of and requires the option
--license.

The --license-url-template option sets the template URL used for the license reference URLs.

The default template URL is : [https://enterprise.dejacode.com/urn/urn:dje:license:{}]
In a template URL, curly braces ({}) are replaced by the license key.

So, by default the license reference URL points to the dejacode page for that license.

A scan example using the --license-url-template TEXT option

./scancode -clpieu --json-pp output.json samples --license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}.yml

In a normal scan, reference url for “ZLIB License” is as follows:

"reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:zlib",

After using the option in the following manner:

``--license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}``

the reference URL changes to this zlib.yml file [https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/licenses/zlib.yml]:

"reference_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/zlib.yml",

The reference URL changes for all detected licenses in the scan, across the scan result file.

--license-text-diagnostics Options

Dependency

The option --license-text-diagnostics is a sub-option of and requires the options
--license and --license-text.

In the matched license text, include diagnostic highlights surrounding with square brackets []
words that are not matched.

In a normal scan, whole lines of text are included in the matched license text, including parts
that are possibly unmatched.

An example Scan:

./scancode -cplieu --json-pp output.json samples --license-text --license-text-diagnostics

Running a scan on the samples directory with --license-text --license-text-diagnostics options,
causes the following difference in the scan result of the file
samples/JGroups/licenses/bouncycastle.txt.

Without Diagnostics:

"matched_text":
"License Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
(http://www.bouncycastle.org) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction

With Diagnostics on:

"matched_text":
"License [Copyright] ([c]) [2000] - [2006] [The] [Legion] [Of] [The] [Bouncy] [Castle]
([http]://[www].[bouncycastle].[org]) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction,

Core Options

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--reindex-licenses

	Force a check and possible reindexing of the
cached license index.

	--from-json

	Load codebase from an existing JSON scan

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

Comparing Progress Message Options

Default Progress Message:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
[####################] 43
Scanning done.
Scan statistics: 43 files scanned in 33s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.4 files per sec.
Scanning time: 30s.
Indexing time: 2s.
Saving results.

Progress Message with ``–verbose``:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
Scanned: screenshot.png
Scanned: README
...
Scanned: zlib/dotzlib/ChecksumImpl.cs
Scanned: zlib/dotzlib/readme.txt
Scanned: zlib/gcc_gvmat64/gvmat64.S
Scanned: zlib/ada/zlib.ads
Scanned: zlib/infback9/infback9.c
Scanned: zlib/infback9/infback9.h
Scanned: arch/zlib.tar.gz
Scanning done.
Scan statistics: 43 files scanned in 29s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.58 files per sec.
Scanning time: 27s.
Indexing time: 2s.
Saving results.

So, with --verbose enables, progress messages for individual files are shown.

With the ``–quiet`` option enabled, nothing is printed on the Command Line.

--timeout Option

This option sets scan timeout for each file (and not the entire scan). If some file scan
exceeds the specified timeout, that file isn’t scanned anymore and the next file scanning
starts. This helps avoiding very large/long files, and saves time.

Also the number (timeout in seconds) to be followed by this option can be a
floating point number, i.e. 1.5467.

--reindex-licenses Option

ScanCode maintains a license index to search for and detect licenses. When Scancode is
configured for the first time, a license index is built and used in every scan thereafter.

This --reindex-licenses option rebuilds the license index. Running a scan with this option
displays the following message to the terminal in addition to what it normally shows:

Checking and rebuilding the license index...

--from-json Option

If you want to input scan results from a .json file, and run a scan again on those same files,
with some other options/output format, you can do so using the --from-json option.

An example scan command using --from-json:

./scancode --from-json sample.json --json-pp sample_2.json --classify

This inputs the scan results from sample.json, runs the post-scan plugin --classify and
outputs the results for this scan to sample_2.json.

--max-in-memory Option

During a scan, as individual files are scanned, the scan details for those files are kept on
memory till the scan is completed. Then after the scan is completed, they are written in the
specified output format.

Now, if the scan involves a very large number of files, they might not fit in the memory during
the scan. For this reason, disk-caching can be used for some/all of the files.

Some important INTEGER values of the --max-in-memory INTEGER option:

	0 - Unlimited Memory, store all the file/directory scan results on memory

	-1 - Use only Disk-Caching, store all the file/directory scan results on disk

	10000 - Default, store 10,000 file/directory scan results on memory and the rest on disk

An example usage:

./scancode -clieu --json-pp sample.json samples --max-in-memory -1

Scancode Output Formats

Scan results generated by Scancode are available in different formats, to be specified by the
following options.

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--csv FILE

	Write scan output as CSV to FILE.

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	Write scan output as a mini HTML
application to FILE.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

Note

You can Output Scan Results in two different file formats simultaniously in one Scan. An
example - ./scancode -clpieu --json-pp output.json --html output.html samples.

Note

All the examples and snippets that follows heas been generated by scanning the samples
folder distributed with scancode-toolkit.

--json FILE

Among the ScanCode Output Formats, json is the most important one, and is recommended over
others. Scancode Workbench and other applications that use Scancode Result data as input accept
only the json format.

Note

There isn’t any default output option in Scancode Versions 3.x, unlike 2.x versions (which had
json as default).

The following code performs a scan on the samples directory, and publishes the results in
json format:

./scancode -clpieu --json output.json samples

Note

The default json format prints the whole report without line breaks/spaces/indentations,
which can be ugly to look at.

[image: ../../_images/json_ugly.png]

The entire JSON file is structured in the following manner:

At first some general information on the scan, what options were used, the number of files etc.
And then all the files follow.

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 ...
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 ...
 ...
 ...
 {
 "path": "samples/zlib/iostream2/zstream_test.cpp",
 "type": "file",
 "name": "zstream_test.cpp",
 "base_name": "zstream_test",
 "extension": ".cpp",
 "size": 711,
 "date": "2019-02-12",
 ...
 ...
 ...
 "scan_errors": []
 }
]
}

--json-pp FILE

json-pp stands for JSON Pretty-Print format. In the previous format, i.e. Simple json,
the whole output is printed in one line, which isn’t well suited for getting information if
you’re looking at the file itself (or printing at stdout). So this option formats the output
results in json but in a properly spaced and indented manner, and is easy to look at.

The following code performs a scan on the samples directory, and publishes the results in
json-pp format:

./scancode -clpieu --json-pp output.json samples

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "licenses": [
 {
 "key": "mit-old-style",
 "score": 100.0,
 "name": "MIT Old Style",
 "short_name": "MIT Old Style",
 "category": "Permissive",
 "is_exception": false,
 "owner": "MIT",
 "homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style",
 "spdx_license_key": null,
 "spdx_url": "",
 "start_line": 9,
 "end_line": 15,
 "matched_rule": {
 "identifier": "mit-old-style_cmr-no_1.RULE",
 "license_expression": "mit-old-style",
 "licenses": [
 "mit-old-style"
],
 "is_license_text": true,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": false,
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
 "license_expressions": [
 "mit-old-style"
],
 "copyrights": [
 {
 "value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "value": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

This is the recommended Output option for Scancode Toolkit.

--json-lines FILE

ScanCode also has a --json-lines format option, where each report of a file scanned is
formatted in one line.

The following code performs a scan on the samples directory, and publishes the results in
json-lines format:

./scancode -clpieu --json-lines output.json samples

Here is a sample line from a report generated by the jsonlines format:

{"files":[{"path":"samples/zlib/ada",licenses":[],"copyrights":[],"packages":[]}]}

The header information is also formatted in one line (i.e. The First Line of the file).

The whole Output file looks like:

{"headers":[{"tool_name":"scancode-toolkit","tool_version":"3.1.1","options":{"input":["samples/"],"--copyright":true,"--email":true,"--info":true,"--json-lines":"output.json","--license":true,"--package":true,"--url":true},"notice":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.","start_timestamp":"2019-10-19T210920.143831","end_timestamp":"2019-10-19T211052.048182","message":null,"errors":[],"extra_data":{"files_count":36}}]}
{"files":[{"path":"samples" ... "scan_errors":[]}]}
{"files":[{"path":"samples/README", ... "scan_errors":[]}]}
{"files":[{"path":"samples/screenshot.png", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/EULA", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/LICENSE", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-1.1.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-2.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/bouncycastle.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/cpl-1.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/lgpl.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/FixedMembershipToken.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/GuardedBy.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/ImmutableReference.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RATE_LIMITER.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStub.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStubManager.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/S3_PING.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada/zlib.ads", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/AssemblyInfo.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/ChecksumImpl.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/LICENSE_1_0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/readme.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64/gvmat64.S" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream_test.cpp", ... "scan_errors":[]}]}

Note

This jsonlines format also omits other file information like type, name, date,
extension, sha1 and md5 hashes, programming language etc.

Comparing Different json Output Formats

Default --json Output:

[image: ../../_images/output_json.png]

--json-pp Output:

[image: ../../_images/output_jsonpp.png]

--json-lines Output:

[image: ../../_images/output_jsonlines.png]

--spdx-rdf FILE

SPDX [https://spdx.org/] stands for “Software Package and Data Exchange” and is an open standard
for communicating software bill of material information (including components, licenses,
copyrights, and security references).

The following code performs a scan on the samples directory, and publishes the results in
spdx-rdf format:

./scancode -clpieu --spdx-rdf output.spdx samples

Learn more about SPDX specifications here [https://spdx.org/specifications] and in this GitHub
repository [https://github.com/spdx/spdx-spec].

Here the file is structured as a dictionary of named properties and classes using W3C’s
RDF Technology [https://www.w3.org/RDF/].

… figure:: data/output_spdx_rdf1.png

--spdx-tv FILE

This format is another SPDX variant, with the output file being structured in the following
manner:

The following code performs a scan on the samples directory, and publishes the results in
spdx-tv format:

./scancode -clpieu --spdx-tv output.spdx samples

A SPDX-TV file starts with:

Document Information

SPDXVersion: SPDX-2.1
DataLicense: CC0-1.0
DocumentComment: <text>Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. No content created from
ScanCode should be considered or used as legal advice. Consult an Attorney
for any legal advice.
ScanCode is a free software code scanning tool from nexB Inc. and others.
Visit https://github.com/nexB/scancode-toolkit/ for support and download.</text>

Creation Info

Creator: Tool: ScanCode 2.2.1
Created: 2019-09-22T21:55:04Z

After a section titled #Packages, a list follows.

[image: ../../_images/output_spdx_tv_package.png]

Each File information is listed under a #File title, for each of the files.

	
	FileName

	FileChecksum

	
	LicenseConcluded

	LicenseInfoInFile

	
	FileCopyrightText

An example goes as follows:

[image: ../../_images/output_spdx_tv_file.png]

After the files section, there’s a section for licenses under a #Licences title, with the
following information for each license:

	
	LicenseID

	
	LicenseComment

	
	ExtractedText

Here’s an example:

[image: ../../_images/output_spdx_tv_licenses.png]

--html FILE

ScanCode supports formatting the Output result is a simple html format, to open with your
favorite browser. This helps quick visualization of the detected license/copyright and other
main information in the form of tables.

The following code performs a scan on the samples directory, and publishes the results in
HTML format:

./scancode -clpieu --html output.html samples

The HTML page generated has these following Tables:

	
	Copyright and Licenses Information

	File Information

	
	Package Information

	Licenses (Links to Dejacode/License Homepage)

[image: ../../_images/output_html1.png]

[image: ../../_images/output_html2.png]

[image: ../../_images/output_html3.png]

--html-app FILE

ScanCode also supports formatting the output in a HTML visualization tool, which is more
helpful than the standard HTML format.

The following code performs a scan on the samples directory, and publishes the results in
html-app format:

./scancode -clpieu --csv output.html samples

The Files scanned are shown in the left sidebar, and the section on the right contains separate
tabs for the following:

	
	License Summary

	Copyright Summary

	Clues

	
	File Details

	Packages

Note

The HTML app also contains a Search option to easily find what you are looking for.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

[image: ../../_images/output_html_app1.png]

[image: ../../_images/output_html_app2.png]

[image: ../../_images/output_html_app3.png]

--csv FILE

ScanCode can publish results in the useful .csv format.

The following code performs a scan on the samples directory, and publishes the results in
csv format:

./scancode -lpceiu --csv sample.csv samples

The first line of the csv file contains the headings, and they are:

	
	Resource,

	type,

	name,

	base_name,

	extension,

	date,

	size,

	sha1,

	md5,

	files_count,

	mime_type,

	file_type,

	programming_language,

	is_binary,

	is_text,

	is_archive,

	is_media,

	is_source,

	
	is_script,

	scan_errors,

	license__key,

	license__score,

	license__short_name,

	license__category,

	license__owner,

	license__homepage_url,

	license__text_url,

	license__reference_url,

	license__spdx_license_key,

	license__spdx_url,

	matched_rule__identifier,

	matched_rule__license_choice,

	matched_rule__licenses,

	copyright,

	copyright_holder,

	author,

	
	email,

	start_line,

	end_line,

	url,

	package__type,

	package__name,

	package__version,

	package__primary_language,

	package__summary,

	package__description,

	package__size,

	package__release_date,

	package__homepage_url,

	package__notes,

	package__bug_tracking_url,

	package__vcs_repository,

	package__copyright_top_level

Each subsequent line represents one element, i.e. can be any of the following:

	
	license

	
	copyright

	
	package

	
	email

	
	url

So if there’s multiple elements in a file, they are each given an entry with the details mentioned
earlier.

[image: ../../_images/output_csv.png]

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.html:
[
 {% if results.license_copyright %}
 {% for location, data in results.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$./scancode -clpeui --custom-output sample.json --custom-template sample.html samples
Scanning files...
 [####################################] 46
Scanning done.

Now are results are saved in t.json and we can easily view them with head t.json:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

Controlling Scancode Output and Filters

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

--strip-root Vs. --full-root

For a default scan of the “samples” folder, this a comparison between the default,
strip-root and full-root options.

An example Scan

./scancode -cplieu --json-pp output.json samples --full-root

These two changes only the “path” attribute of the file information. For this comparison we
compare the “path” attributes of the file LICENSE inside JGroups directory.

The default path:

"path": "samples/JGroups/LICENSE",

For the --full-root option, the path relative to the Root of your local filesystem.

"path": "/home/ayansm/Desktop/GSoD/scancode-toolkit-versions/scancode-toolkit-2.2.1/samples/JGroups/LICENSE"

For the --strip-root option, the root directory (here samples) is removed from path :

"path": "JGroups/LICENSE"

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

--ignore-author <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common author then --ignore-author option can be used to do
the same.

This scan ignores all files with authors matching the string “Apache Software Foundation”:

./scancode -cplieu --json-pp output.json samples --ignore-author "Apache Software Foundation"

More information on Glob Pattern Matching.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

--ignore-copyright-holder <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common copyright holder then --ignore-copyright-holder option
can be used to do the same.

This scan ignores all files with Copyright Holders matching the string “Free Software Foundation”:

./scancode -cplieu --json-pp output.json samples --ignore-copyright-holder "Free Software Foundation"

More information on Glob Pattern Matching.

--only-findings Plugin

This option removes from the scan results, the files where nothing significant has been
detected, like files which doesn’t contain any licenses, copyrights, emails or urls (if
requested in the scan options), and isn’t a package.

An example Scan:

./scancode -cplieu --json-pp output.json samples --only-findings

Note

This also changes in the result displayed, the number of files scanned.

For example, scanning the sample files (distributed by default with scancode-toolkit) without
this option, displays in it’s report information of 43 files. But after enabling this option, the
result shows information for only 31 files.

Pre-Scan Options

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--summary-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--summary-by-facet

--ignore Option

In a scan, all files inside the directory specified as an input argument is scanned. But if
there are some files which you don’t want to scan, the --ignore option can be used to do
the same.

A sample usage:

./scancode --ignore "*.java" samples samples.json

Here, Scancode ignores files ending with .java, and continues with other files as usual.

More information on Glob Pattern Matching.

--include Option

In a normal scan, all files inside the directory specified as an input argument is scanned. But
if you want to run the scan on only some selective files, then --include option can be used
to do the same.

A sample usage:

./scancode --include "*.java" samples samples.json

Here, Scancode selectively scans files that has names ending with .java, and ignores all other files. This
is basically complementary in behavior to the --ignore option.

More information on Glob Pattern Matching.

--classify

Sub-Option

The options --license-clarity-score and --summary-key-files are sub-options of
--classify. --license-clarity-score and --summary-key-files are Post-Scan
Options.

This option makes ScanCode further classify scanned files/directories, to determine whether they
fall in these following categories

	legal

	readme

	top-level

	manifest

A manifest file in computing is a file containing metadata for a group of accompanying
files that are part of a set or coherent unit.

	key-file

A KEY file is a generic file extension used by various programs when registering legal copies
of the software. It may be saved in a plain text format, but generally contains some form of
encrypted key string that authenticates the purchase and registers the software.

As in, to the JSON object of each file scanned, these extra attributes are added:

"is_legal": false,
"is_manifest": false,
"is_readme": true,
"is_top_level": true,
"is_key_file": true,

--facet Option

Sub-Option

The option --summary-by-facet is a sub-option of --facet. --summary-by-facet is
a Post-Scan Option.

Valid <facet> values are:

	core,

	dev,

	tests,

	docs,

	data,

	examples.

You can use the --facet option in the following manner:

./scancode -clpieu --json-pp sample_facet.json samples --facet dev="*.java" --facet dev="*.c"

This adds to the header object, the following attribute:

"--facet": [
 "dev=*.java",
 "dev=*.c"
],

Here in this example, .java and .c files are marked as it belongs to facet dev.

As a result, .java file has the following attribute added:

"facets": [
 "dev"
],

Note

All other files which are not dev are marked to be included in the facet core.

For each facet, the --facet option precedes the <facet>=<pattern> argument. For specifying
multiple facets, this whole part is repeated, including the --facet option.

For users who want to know What is a Facet?.

Glob Pattern Matching

All the Pre-Scan options use pattern matching, so the basics of Glob Pattern Matching is
discussed briefly below.

Glob pattern matching is useful for matching a group of files, by using patterns in their
names. Then using these patterns, files are grouped and treated differently as required.

Here are some rules from the Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]
on glob patterns. Refer the same for more detailed information.

A string is a wildcard pattern if it contains one of the characters ‘?’, ‘*’ or ‘[‘. Globbing
is the operation that expands a wildcard pattern into the list of pathnames matching the
pattern. Matching is defined by:

	A ‘?’ (not between brackets) matches any single character.

	A ‘*’ (not between brackets) matches any string, including the empty string.

	An expression “[…]” where the first character after the leading ‘[‘ is not an ‘!’ matches a
single character, namely any of the characters enclosed by the brackets.

	There is one special convention: two characters separated by ‘-‘ denote a range.

	An expression “[!…]” matches a single character, namely any character that is not matched
by the expression obtained by removing the first ‘!’ from it.

	A ‘/’ in a pathname cannot be matched by a ‘?’ or ‘*’ wildcard, or by a range like “[.-0]”.

Note that wildcard patterns are not regular expressions, although they are a bit similar.

For more information on Glob pattern matching refer these resources:

	Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]

	Wildcard Match Documentation [https://facelessuser.github.io/wcmatch/glob/].

You can also import these Python Libraries to practice UNIX style pattern matching:

	fnmatch [https://docs.python.org/2/library/fnmatch.html] for File Name matching

	glob [https://docs.python.org/2/library/glob.html#module-glob] for File Path matching

What is a Facet?

A facet is defined as follows (by ClearlyDefined):

A facet of a component is a subset of the files related to the component. It’s really just a
grouping that helps us understand the shape of the project. Each facet is described by a set of
glob expressions, essentially wildcard patterns that are matched against file names.

Each facet definition can have zero or more glob expressions. A file can be captured by more
than one facet. Any file found but not captured by a defined facet is automatically assigned to
the core facet.

	core - The files that go into making the release of the component. Note that the core
facet is not explicitly defined. Rather, it is made up of whatever is not in any other facet.
So, by default, all files are in the core facet unless otherwise specified.

	data - The files included in any data distribution of the component.

	dev - Files primarily used at development time (e.g., build utilities) and not
distributed with the component

	docs - Documentation files. Docs may be included with the executable component or
separately or not at all.

	examples – Like docs, examples may be included in the main component release or
separately.

	tests – Test files may include code, data and other artifacts.

Important Links:

	Facets [https://github.com/clearlydefined/clearlydefined/blob/master/docs/clearly.md]

	ClearlyDefined [https://clearlydefined.io/about]

Post-Scan Options

Post-Scan options activate their respective post-scan plugins which execute the task.

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of - --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.

Sub-Option of - --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--is-license-text

	Set the “is_license_text” flag to true for
files that contain mostly license texts and
notices (e.g. over 90% of the content).

Sub-Option of - --info and --license-text.

Warning

--is-license-text is an experimental Option.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of - --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize license, copyright and other scans
at the codebase level.

Sub-Options:

	--summary-by-facet

	--summary-key-files

	--summary-with-details

	--summary-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of - --summary and --facet.

	--summary-key-files

	Summarize license, copyright and other scans
for key, top-level files. Key files are top-
level codebase files such as COPYING, README
and package manifests as reported by the
--classify option “is_legal”, “is_readme”,
“is_manifest” and “is_top_level” flags.

Sub-Option of - --classify and --summary.

	--summary-with-details

	Summarize license, copyright and other scans
at the codebase level, keeping intermediate
details at the file and directory level.

To see all plugins available via command line help, use --plugins.

Note

Plugins that are shown by using --plugins inlcude the following:

	Post-Scan Plugins (and, the following)

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

--mark-source Option

Dependency

The option --mark-source is a sub-option of and requires the option --info.

The mark-source option marks the “is_source” attribute of a directory to be “True”, if more
than 90% of the files under that directory is source files, i.e. Their “is_source” attribute is
“True”.

When the following command is executed to scan the samples directory with this option enabled:

./scancode -clpieu --json-pp output.json samples --mark-source

Then, the following directories are marked as “Source”, i.e. Their “is_source” attribute is changed
from “false” to “True”.

	samples/JGroups/src

	samples/zlib/iostream2

	samples/zlib/gcc_gvmat64

	samples/zlib/ada

	samples/zlib/infback9

--consolidate Option

Dependency

The option --consolidate is a sub-option of and requires the options --license
, --copyright and --package.

The JSON file containing scan results after using the --consolidate Plugin is structured as
follows: (note: “…” in the image contains more data)

An example Scan:

./scancode -clpieu --json-pp output.json samples --consolidate

The JSON output file is structured as follows:

{
 "headers": [
 {...}
],
 "consolidated_components": [
 {...
 },
 {
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
 },
 {...
 }
],
 "consolidated_packages": [],
 "files": [
]
}

Each consolidated component has the following information:

"consolidated_components": [
{
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
},

In addition to this, in every file/directory where the consolidated part (i.e. License information)
was present, a “consolidated_to” attribute is added pointing to the “identifier” of
“consolidated_components”:

"consolidated_to": [
 "dmitriy_anisimkov_1"
],

Note that multiple files may have the same “consolidated_to” attribute.

--filter-clues Option

The --filter-clues Plugin filters redundant duplicated clues already contained in detected
licenses, copyright texts and notices.

--is-license-text Option

Dependency

The option --is-license-text is a sub-option of and requires the options
--info and --license-text.
Also, the option --license-text is a sub-option of and requires the options
--license.

If the --is-license-text is used, then the “is_license_text” flag is set to true for files that
contain mostly license texts and notices. Here mostly means over 90% of the content of the file.

An example Scan:

./scancode -clpieu --json-pp output.json samples --license-text --is-license-text

If the samples directory is scanned with this plugin, the files containing mostly license texts
will have the following attribute set to ‘true’:

"is_license_text": true,

The files in samples that will have the “is_license_text” to be true are:

samples/JGroups/EULA
samples/JGroups/LICENSE
samples/JGroups/licenses/apache-1.1.txt
samples/JGroups/licenses/apache-2.0.txt
samples/JGroups/licenses/bouncycastle.txt
samples/JGroups/licenses/cpl-1.0.txt
samples/JGroups/licenses/lgpl.txt
samples/zlib/dotzlib/LICENSE_1_0.txt

Note that the license objects for each detected license in the files already has “is_license_text”
attributes by default, but not the file objects. They only have this attribute if the plugin is used.

Warning

--is-license-text is an experimental Option.

--license-clarity-score Option

Dependency

The option --license-clarity-score is a sub-option of and requires the option
--classify.

The --license-clarity-score plugin when used in a scan, computes a summary license clarity
score at the codebase level.

An example Scan:

./scancode -clpieu --json-pp output.json samples --classify --license-clarity-score

The “license_clarity_score” will have the following attributes:

	
	“score”

	“declared”

	
	“discovered”

	“consistency”

	
	“spdx”

	“license_texts”

It whole JSON file is structured as follows, when it has “license_clarity_score”:

{
 "headers": [
 { ...
 }
],
 "license_clarity_score": {
 "score": 17,
 "declared": false,
 "discovered": 0.69,
 "consistency": false,
 "spdx": false,
 "license_texts": false
 },
 "files": [
 ...
]
}

--license-policy FILE Option

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit
 label: Approved License
 color_code: '#00800'
 icon: icon-ok-circle
- license_key: agpl-3.0
 label: Approved License
 color_code: '#008000'
 icon: icon-ok-circle

Note

In the policy file only the “license_key” is a required field.

Applying License Policies during a ScanCode scan, using the --license-policy Plugin:

./scancode -clipeu --json-pp output.json samples --license-policy policy-file.yml

Note

--license-policy FILE is a not a sub-option of --license. It works normally without
-l.

This adds to every file/directory an object “license_policy”, having as further attributes under it
the fields as specified in the .YAML file. Here according to our example .YAML file, the attributes
will be:

	
	“license_key”

	
	“label”

	
	“color_code”

	
	“icon”

Here the samples directory is scanned, and the Scan Results for a sample file is as follows:

{
 "path": "samples/JGroups/licenses/apache-2.0.txt",
 ...
 ...
 ...
 "licenses": [
 ...
 ...
 ...
],
 "license_expressions": [
 "apache-2.0"
],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "license_policy": {
 "license_key": "apache-2.0",
 "label": "Approved License",
 "color_code": "#008000",
 "icon": "icon-ok-circle"
 },
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

More information on the License Policy Plugin and usage.

--summary Option

Sub-Option

The option --summary-by-facet, --summary-key-files and
--summary-with-details``are sub-options of ``--summary. These Sub-Options are all
Post-Scan Options.

An example Scan:

./scancode -clpieu --json-pp output.json samples --summary

The whole JSON file is structured as follows, when the --summary plugin is applied:

{
 "headers": [
 {
 ...
 }
],
 "summary": {
 "license_expressions": [...
],
 "copyrights": [...
],
 "holders": [...
],
 "authors": [...
],
 "programming_language": [...
],
 "packages": []
 },
 "files": [...
]
}

The Summary object has the following attributes.

	
	“license_expressions”

	“copyrights”

	
	“holders”

	“authors”

	
	“programming_language”

	“packages”

Each attribute has multiple entries each containing “value” and “count”, with their values having
the summary information inside them.

A sample summary object generated:

"summary": {
"license_expressions": [
 {
 "value": "zlib",
 "count": 13
 },
]
],
"copyrights": [
 {
 "value": "Copyright (c) Mark Adler",
 "count": 4
 },
 {
 "value": "Copyright (c) Free Software Foundation, Inc.",
 "count": 2
 },
 {
 "value": "Copyright (c) The Apache Software Foundation",
 "count": 1
 },
 {
 "value": "Copyright Red Hat, Inc. and individual contributors",
 "count": 1
 }
],
"holders": [
 {
 "value": null,
 "count": 10
 },
 {
 "value": "Mark Adler",
 "count": 4
 },
 {
 "value": "Red Hat, Inc. and individual contributors",
 "count": 1
 },
 {
 "value": "The Apache Software Foundation",
 "count": 1
 },
],
"authors": [
 {
 "value": "Bela Ban",
 "count": 4
 },
 {
 "value": "Brian Stansberry",
 "count": 1
 },
 {
 "value": "the Apache Software Foundation (http://www.apache.org/)",
 "count": 1
 }
],
"programming_language": [
 {
 "value": "C++",
 "count": 13
 },
 {
 "value": "Java",
 "count": 7
 },
],
"packages": []

--summary-by-facet Option

Dependency

The option --summary-by-facet is a sub-option of and requires the options --facet
and --summary.

Running the scan with --summary --summary-by-facet Plugins creates individual summaries for
all the facets with the same license, copyright and other scan information, at a codebase level
(in addition to the codebase level general summary generated by --summary Plugin)

An example scan using the --summary-by-facet Plugin:

./scancode -clieu --json-pp output.json samples --summary --facet dev="*.java" --facet dev="*.c" --summary-by-facet

Note

All other files which are not dev are marked to be included in the facet core.

Warning

Running the same scan with ./scancode -clpieu i.e. with -p generates an error.
Avoid this.

The JSON file containing scan results is structured as follows:

{
 "headers": [...
],
 "summary": { ...
 },
 "summary_by_facet": [
 {
 "facet": "core",
 "summary": { ...
 }
 },
 {
 "facet": "dev",
 "summary": { ...
 }
 },
 {
 "facet": "tests",
 "summary": { ...
 }
 },
 {
 "facet": "docs",
 "summary": { ...
 }
 },
 {
 "facet": "data",
 "summary": { ...
 }
 },
 {
 "facet": "examples",
 "summary": { ...
 }
 }
],
 "files": [
}

A sample “summary_by_facet” object generated by the previous scan (shortened):

"summary_by_facet": [
 {
 "facet": "core",
 "summary": {
 "license_expressions": [
 {
 "value": "mit",
 "count": 1
 },
],
 "copyrights": [
 {
 "value": "Copyright (c) Free Software Foundation, Inc.",
 "count": 2
 },
],
 "holders": [
 {
 "value": "The Apache Software Foundation",
 "count": 1
 },
 "authors": [
 {
 "value": "Gilles Vollant",
 "count": 1
 },
],
 "programming_language": [
 {
 "value": "C++",
 "count": 8
 },
]
 }
 },
 {
 "facet": "dev",
 "summary": {
 "license_expressions": [
 {
 "value": "zlib",
 "count": 5
 },
 "copyrights": [
 {
 "value": "Copyright Red Hat Middleware LLC, and individual contributors",
 "count": 1
 },
],
 "holders": [
 {
 "value": "Mark Adler",
 "count": 3
 },
],
 "authors": [
 "value": "Brian Stansberry",
 "count": 1
 },
],
 "programming_language": [
 {
 "value": "Java",
 "count": 7
 },
 {
 "value": "C++",
 "count": 5
 }
]
 }
 },
],

Note

Summaries for all the facets are generated by default, regardless of facets not having any
files under them.

For users who want to know What is a Facet?.

--summary-key-files Option

Dependency

The option --summary-key-files is a sub-option of and requires the options
--classify and --summary.

An example Scan:

./scancode -clpieu --json-pp output.json samples --classify --summary --summary-key-files

Running the scan with --summary --summary-key-files Plugins creates summaries for key files
with the same license, copyright and other scan information, at a codebase level (in addition
to the codebase level general summary generated by --summary Plugin)

The resulting JSON file containing the scan results is structured as follows:

{
 "headers": [...
],
 "summary": {
 "license_expressions": [...
],
 "copyrights": [...
],
 "holders": [...
],
 "authors": [...
],
 "programming_language": [...
],
 "packages": []
 },
 "summary_of_key_files": {
 "license_expressions": [
 {
 "value": null,
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 1
 }
],
 "holders": [
 {
 "value": null,
 "count": 1
 }
],
 "authors": [
 {
 "value": null,
 "count": 1
 }
],
 "programming_language": [
 {
 "value": null,
 "count": 1
 }
]
 },
 "files": [

These following flags for each file/directory is also present (generated by --classify)

	
	“is_legal”

	“is_manifest”

	
	“is_readme”

	“is_top_level”

	
	“is_key_file”

--summary-with-details Option

The --summary plugin summarizes license, copyright and other scan information at the
codebase level. Now running the scan with the --summary-with-details plugin instead creates
summaries at individual file/directories with the same license, copyright and other scan
information, but at a file/directory level (in addition to the the codebase level summary).

An example Scan:

./scancode -clpieu --json-pp output.json samples --summary-with-details

Note

--summary is redundant in a scan when --summary-with-details is already selected.

A sample file object in the scan results (a directory level summary of samples/arch) is
structured as follows:

{
 "path": "samples/arch",
 "type": "directory",
 "name": "arch",
 "base_name": "arch",
 "extension": "",
 "size": 0,
 "date": null,
 "sha1": null,
 "md5": null,
 "mime_type": null,
 "file_type": null,
 "programming_language": null,
 "is_binary": false,
 "is_text": false,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "is_legal": false,
 "is_manifest": false,
 "is_readme": false,
 "is_top_level": true,
 "is_key_file": false,
 "summary": {
 "license_expressions": [
 {
 "value": "zlib",
 "count": 3
 },
 {
 "value": null,
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 1
 },
 {
 "value": "Copyright (c) Jean-loup Gailly",
 "count": 1
 },
 {
 "value": "Copyright (c) Jean-loup Gailly and Mark Adler",
 "count": 1
 },
 {
 "value": "Copyright (c) Mark Adler",
 "count": 1
 }
],
 "holders": [
 {
 "value": null,
 "count": 1
 },
 {
 "value": "Jean-loup Gailly",
 "count": 1
 },
 {
 "value": "Jean-loup Gailly and Mark Adler",
 "count": 1
 },
 {
 "value": "Mark Adler",
 "count": 1
 }
],
 "authors": [
 {
 "value": null,
 "count": 4
 }
],
 "programming_language": [
 {
 "value": "C++",
 "count": 3
 },
 {
 "value": null,
 "count": 1
 }
]
 },
 "files_count": 4,
 "dirs_count": 2,
 "size_count": 127720,
 "scan_errors": []
},

These following flags for each file/directory is also present (generated by --classify)

	
	“is_legal”

	“is_manifest”

	
	“is_readme”

	“is_top_level”

	
	“is_key_file”

Basic Tutorials

	How to Run a Scan
	Setting up a Virtual Environment

	Setting up Scancode Toolkit

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	How to Visualize Scan results
	Setting up Scancode Workbench

	Importing Data into Scancode Workbench

	Visualization

	How To Extract Archives
	Usage:

	All Extractcode Options

	How to specify Scancode Output Format
	JSON

	Print to stdout (Terminal)

	HTML

	Custom Output Format

	How to set what will be detected in Scan
	All “Basic” Scan Options

	Different Scans

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up a Virtual Environment

Scancode Toolkit 3.1.1 and Workbench 3.1.0 is not compatible with python 3.x so we will create a
virtual environment [https://docs.python-guide.org/dev/virtualenvs/] using the Virtualenv
tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan3.1.1:

virtualenv -p /usr/bin/python2.7 venv-scan3.1.1
source venv-scan3.1.1/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 3.1.1 tarball or .zip archive from the
Toolkit GitHub Release [https://github.com/nexB/scancode-toolkit/releases/tag/v3.1.1] Page under
assets options. Download and extract the Archive from command line:

For .zip archive:

unzip scancode-toolkit-3.1.1.zip

For .tar.bz2 archive:

tar -xvf scancode-toolkit-3.1.1.tar.bz2

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted
directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

Note

--shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The Basic Scan options, i.e. -c, -l, -p, -e, -u, and -i are to be
decided, according to your requirements. If you do not need one specific type of information
(say, licenses), consider removing it, because the more things you scan for, longer it will take
for the scan to complete.

Note

You have to select these options explicitly, as they are not default anymore from
versions 3.x, unlike earlier versions having -clp as default.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip a file taking a lot of time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

./scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

How to Visualize Scan results

In this simple tutorial example, we import results from a basic scan performed on the samples
directory distributed by default with Scancode, and visualize the outputs through
Scancode Workbench.

Warning

This tutorial uses the 3.1.1 version of Scancode Toolkit, and Scancode Workbench 3.1.0 (This
beta version of ScanCode Workbench is compatible with scans from any ScanCode Toolkit develop
version/branch at or after v3.0.2). If you are using an older version of Scancode Toolkit, check
respective versions of this documentation. Also refer the Scancode Workbench
release highlights [https://github.com/nexB/scancode-workbench/releases/].

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up Scancode Workbench

According to the Install Building Requirements, we have to install Node.js 6.x or later.
Refer to Node.js install instructions [https://nodejs.org/en/download/package-manager/] here.

You can also run the following commands:

sudo apt-get install -y nodejs
sudo npm install npm@5.2.0 -g

After Node.js and npm is installed and get the Scancode Workbench 3.1.0 tarball from the
Workbench Release Page [https://github.com/nexB/scancode-workbench/releases/tag/v3.1.0]. Extract
the package and then launch Scancode Workbench:

./ScanCode-Workbench

This opens the Workbench.

Note

You can also build Scancode Toolkit and Scancode Workbench from source. Clone the repository,
don’t forget to checkout to the specific release using git checkout <release>, and follow
the build instructions. You’ll also have to create a Python 2.7 Virtual Environment, or use the
same venv-3.1.1 created here at How to Run a Scan.

Importing Data into Scancode Workbench

	Click on the File -> Import JSON File or Press Ctrl + I.

	Select the file from the pop-up window.

	Select a Name and Location (where you want it later) for the .sqlite output file.

Note

You can also import a .sqlite file you’ve saved in the past to load scan results. As it is much
faster, once you’ve imported the JSON file and a corresponding SQLite file has been created,
you shouldn’t repeat this. Instead, import the SQLite file next time you want to visualize the
same scan result.

Visualization

Views

Refer Scancode Workbench Views for more information on Visualization.

The dashboard has a general overview.

[image: ../../_images/workbench_dashboard.png]
There are 3 principal views (They appear in the same order in the GIFs):

	Chart Summary View,

	Table View,

	Components Summary View.

[image: ../../_images/views_sample.gif]

Filters

You can also click any file/directory on the file list located on the right, to filter the results
such that it only contains results from that File/Directory.

[image: ../../_images/filter_sample.gif]

Components

Refer Creating Conclusions for more information on Components.

In the table view,

	Apply filters by selecting Files/Directories

	Right Click on the Left Panel

	Select Edit Component

	A pop-up opens with fields, make necessary edits and Save.

	Go to the Component Summary View to see the Component.

[image: ../../_images/components_sample.gif]

How To Extract Archives

ScanCode Toolkit provides archive extraction. This command can be used before running a scan over
a codebase in order to ensure all archives are extracted. Archives found inside an extracted
archive are extracted recursively. Extraction is done in-place in a directory and named after the
archive with '-extract' appended.

[image: ../../_images/scancode-toolkit-extract.png]

Usage:

./extractcode [OPTIONS] <input>

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

How to specify Scancode Output Format

A basic overview of formatting Scancode Output is presented here.

More information on Scancode Output Formats.

JSON

If you want JSON output of ScanCode results, you can pass the --json argument to ScanCode.
The following commands will output scan results in a formatted json file:

	./scancode --json /path/to/output.json /path/to/target/dir

	./scancode --json-pp /path/to/output.json /path/to/target/dir

	./scancode --json-lines /path/to/output.json /path/to/target/dir

To compare the JSON output in different formats refer Comparing Different json Output Formats.

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename
with a “-“, like --json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --jsonlines - samples/

HTML

If you want HTML output of ScanCode results, you can pass the --html argument to ScanCode.
The following commands will output scan results in a formatted HTML page or simple web application:

	./scancode --html /path/to/output.html /path/to/target/dir

	./scancode --html-app /path/to/output.html /path/to/target/dir

For more details on the HTML output format refer --html FILE.

Warning

The --html-app option has been deprecated, use Scancode Workbench instead.

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.html:
[
 {% if results.license_copyright %}
 {% for location, data in results.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$./scancode -clpeui --custom-output sample.json --custom-template sample.html samples
Scanning files...
 [####################################] 46
Scanning done.

Now are results are saved in t.json and we can easily view them with head t.json:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

How to set what will be detected in Scan

ScanCode allows you to scan a codebase for license, copyright and other interesting information
that can be discovered in files. The following options are available for detection when using
ScanCode Toolkit:

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

Different Scans

The following examples will use the samples directory that is provided with the ScanCode
Toolkit code [https://github.com/nexB/scancode-toolkit/tree/master/samples]. All examples will
be saved in the JSON format, which can be loaded into Scancode Workbench for visualization. See
How to Visualize Scan results for more information. Another output format option is a
static html file. See Scancode Output Formats for more information.

Scan for all clues:

To scan for licenses, copyrights, urls, emails, package information, and file information

./scancode -clipeu --json output.json samples

Scan for license and copyright clues:

./scancode -cl --json-pp output.json samples

Scan for emails and URLs:

./scancode -eu --json-pp output.json samples

Scan for package information:

./scancode -p --json-pp output.json samples

Scan for file information:

./scancode -i --json-pp output.json samples

To see more example scans:

./scancode --examples

For more information, refer All Available Options.

How-To Guides

	How To Add a New License for Detection
	How to add a new license for detection?

	How to Add New License Rules for Enhanced Detection
	How to add a new license detection rule?

How To Add a New License for Detection

How to add a new license for detection?

To add new license, you first need to select a new and unique license key (mit and gpl-2.0 are
some of the existing license keys). All licenses are stored as plain text files in the
src/licensedcode/data/licenses directory using their key as part of the file names.

You need to create a pair of files:

	a file with the text of the license saved in a plain text file named key.LICENSE

	a small text data file (in YAML format) named key.yml that contains license information such as:

key: my-license
name: My License

The key name can contain only these symbols:

	lowercase letters from a to z,

	numbers from 0 to 9,and

	dash - and . period signs. No spaces.

Save these two files in the src/licensedcode/data/licenses/ directory.

Done!

See the src/licensedcode/data/licenses/ directory for examples.

How to Add New License Rules for Enhanced Detection

ScanCode relies on license rules to detect licenses. A rule is a simple text file containing a
license text or notice or mention. And a small YAML text file that tells ScanCode which licenses
to report when the text is detected.

See the FAQ for a high level description of How to Add New License Rules for Enhanced Detection.

How to add a new license detection rule?

A license detection rule is a pair of files:

	a plain text rule file that is typically a variant of a license text, notice or license mention.

	a small text data file (in YAML format) documenting which license(s) should be detected for the
rule text.

To add a new rule, you need to pick a unique base file name. As a convention, we like to include the
license key(s) that should be detected in that name to make it more descriptive. For example:
mit_and_gpl-2.0 is a good base name. Add a suffix to make it unique if there is already a rule
with this base name. Do not use spaces or special characters in that name.

Then create the rule file in the src/licensedcode/data/rules/ directory using this name, replacing
selected_base_name with the base name you selected:

selected_base_name.RULE

Save your rule text in this file.

Then create the YAML data file in the src/licensedcode/data/rules/ directory using this name:

selected_base_name.yml

For a simple mit and gpl-2.0 detection license keys detection, the content of this file can be
this YAML snippet:

licenses:
 - mit
 - gpl-2.0

Save these two files in the src/licensedcode/data/licenses/ directory and you are done!

See the src/licensedcode/data/rules/ directory for examples.

More (advanced) rules options:

	you can use a notes: text field to document this rule.

	if no license should be detected for your .RULE text, do not add a list of license keys,
just add a note.

	.RULE text can contain special text regions that can be ignored when scanning for licenses.
You can mark a template region in your rule text using {{double curly braces}} and up to five
words can vary and still match this rule. You must add this field in your .yml data file to mark
this rule as a template

template: yes

	By using a number after the opening braces, more than five words can be skipped.
With {{10 double curly braces }} ten words would be skipped.

	To mark a rule as detecting a choice of licenses, add this field in your .yml file:

license_choice: yes

See the #257 issue [https://github.com/nexB/scancode-toolkit/issues/257] and the related
#258 pull request [https://github.com/nexB/scancode-toolkit/pull/258] for an example:
this adds a new rule to detect a combination of MIT or GPL.

How it all Works

	Overview
	How does ScanCode work?

Overview

How does ScanCode work?

For license detection, ScanCode uses a (large) number of license texts and license detection
‘rules’ that are compiled in a search index. When scanning, the text of the target file is
extracted and used to query the license search index and find license matches.

For copyright detection, ScanCode uses a grammar that defines the most common and less common
forms of copyright statements. When scanning, the target file text is extracted and ‘parsed’
with this grammar to extract copyright statements.

ScanCode-Toolkit performs the scan on a codebase in the following steps :

	Collect an inventory of the code files and classify the code using file types,

	Extract files from any archive using a general purpose extractor

	Extract texts from binary files if needed

	Use an extensible rules engine to detect open source license text and notices

	Use a specialized parser to capture copyright statements

	Identify packaged code and collect metadata from packages

	Report the results in the formats of your choice (JSON, CSV, etc.) for integration
with other tools

Scan results are provided in various formats:

	a JSON file simple or pretty-printed,

	SPDX tag value or XML, RDF formats,

	CSV,

	a simple unformatted HTML file that can be opened in browser or as a spreadsheet.

For each scanned file, the result contains:

	its location in the codebase,

	the detected licenses and copyright statements,

	the start and end line numbers identifying where the license or copyright was found in the
scanned file, and

	reference information for the detected license.

For archive extraction, ScanCode uses a combination of Python modules, 7zip and libarchive/bsdtar
to detect archive types and extract these recursively.

Several other utility modules are used such as libmagic for file and mime type detection.

Contribute

	Contributing to Code Development
	Code layout and conventions

	Running tests

	pip requirements and the configure script

	ScanCode requirements and third-party Python libraries

	Using ScanCode as a Python library

	How to cut a new release:

	Contributing to the Documentation
	Continuous Integration

	Style Checks Using Doc8

	Extra Style Checks

	Roadmap
	Legend

	Work in Progress

	Other work in progress

	Completed features

	Google Summer of Code 2017 - Final report
	Project: Plugin architecture for ScanCode

	1. Format :

	2. Post-scan :

	3. Pre-scan :

	4. Scan (proper):

	5. Other work:

	6. What’s left?

Contributing to Code Development

See CONTRIBUTING.rst [https://github.com/nexB/scancode-toolkit/blob/master/CONTRIBUTING.rst]
for details.

Code layout and conventions

Source code is in src/ Tests are in tests/.

There is one Python package for each major feature under src/ and a corresponding directory
with the same name under tests (but this is not a package by design).

Each test script is named test_XXXX and while we love to use py.test as a test runner,
most tests have no dependencies on py.test, only on the unittest module (with the exception
of some command line tests that depend on pytest monkeypatching capabilities.

When source or tests need data files, we store these in a data subdirectory.

We use PEP8 conventions with a relaxed line length that can be up to 90’ish characters long when
needed to keep the code clear and readable.

We store pre-built bundled native binaries in bin/ sub-directories of each src/ packages.
These binaries are organized by OS and architecture. This ensures that ScanCode works out of the box
either using a checkout or a download, without needing a compiler and toolchain to be installed.
The corresponding source code for the pre-built binaries are stored in a separate repository at
https://github.com/nexB/scancode-thirdparty-src.

We store bundled thirdparty components and libraries in the thirdparty directory. Python
libraries are stored as wheels, eventually pre-built if the corresponding wheel is not available
in the Pypi repository. Some of these components may be advanced builds with bug fixes or advanced
patches.

We write tests, a lot of tests, thousands of tests. Several tests are data-driven and use data
files as test input and sometimes data files as test expectation (in this case using either
JSON or YAML files). The tests should pass on Linux 64 bits, Windows 32 and 64 bits and on
MacOSX 10.6.8 and up. We maintain two CI loops with Travis (Linux) at
https://travis-ci.org/nexB/scancode-toolkit and Appveyor (Windows) at
https://ci.appveyor.com/project/nexB/scancode-toolkit.

When finding bugs or adding new features, we add tests. See existing test code for examples.

More info:

	Source code and license datasets are in the /src/ directory.

	Test code and test data are in the /tests/ directory.

	Datasets and test data are in /data/ sub-directories.

	Third-party components are vendored in the /thirdparty/ directory. ScanCode is self contained
and should not require network access for installation or configuration of third-party libraries.

	Additional pre-compiled vendored binaries are stored in bin/ sub-directories of the /src/
directory with their sources in this repo: https://github.com/nexB/scancode-thirdparty-src/

	Porting ScanCode to other OS (FreeBSD, etc.) is possible. Enter an issue for help.

	Bugs and pull requests are welcomed.

	See the wiki and CONTRIBUTING.rst for more info.

Running tests

ScanCode comes with over 13,000 unit tests to ensure detection accuracy and stability across Linux,
Windows and macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the py.test script to run the whole test suite. This is
installed by pytest, which is bundled with a ScanCode checkout and installed when you
run ./configure).

If you are running from a fresh git clone and you run ./configure and then
source bin/activate the py.test command will be available in your path.

Alternatively, if you have already configured but are not in an activated “virtualenv” the
py.test command is available under <root of your checkout>/bin/py.test

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel (and faster)
For instance: py.test -n4 runs the tests on 4 CPUs. We typically run the tests in
verbose mode with py.test -vvs -n4.

You can also run a subset of the test suite as shown in the CI configs
https://github.com/nexB/scancode-toolkit/blob/develop/appveyor.yml#L6 e,g,
py.test -n 2 -vvs tests/scancode runs only the test scripts present in the tests/scancode
directory. (You can pass a path to a specific test script file there too).

See also https://docs.pytest.org for details or use the py.test -h command to show the many
other options available.

One useful option is to run a select subset of the test functions matching a pattern with the
-k option, for instance: py.test -vvs -k tcpdump would only run test functions that contain
the string “tcpdump” in their name or their class name or module name .

Another useful option after a test run with some failures is to re-run only the failed tests with
the --lf option, for instance: py.test -vvs --lf would only run only test functions that
failed in the previous run.

pip requirements and the configure script

ScanCode use the configure and configure.bat (and etc/configure.py behind the scenes)
scripts to install a virtualenv [https://virtualenv.pypa.io/en/stable/] , install required
packaged dependencies as pip [https://github.com/pypa/pip] requirements and more configure tasks
such that ScanCode can be installed in a self-contained way with no network connectivity required.

Earlier unreleased versions of ScanCode where using buildout to install and configure
eventually complex dependencies. We had some improvements that were merged in the upstream
buildout to support bootstrapping and installing without a network connection and When we
migrated to use pip and wheels as new, improved and faster way to install and configure
dependencies we missed some of the features of buildout like the recipes, being able to
invoke arbitrary Python or shell scripts after installing packages and have scripts or requirements
that are operating system-specific.

ScanCode requirements and third-party Python libraries

In a somewhat unconventional way, all the required libraries are bundled aka. Copied in the repo
itself in the thirdparty/ directory. If ScanCode were only a library it would not make sense. But
it is first an application and having a well defined frozen set of dependent packages is important
for an app. The benefit of this approach (combined with the configure script) means that a mere
checkout of the repository contains everything needed to run ScanCode except for a
Python interpreter.

Using ScanCode as a Python library

ScanCode can be used alright as a Python library and is available as as a Python wheel in Pypi and
installed with pip install scancode-toolkit.

How to cut a new release:

	run bumpversion with major, minor or patch to bump the version in:

	src/scancode/__init__.py

	setup.py

	Update the CHANGELOG.rst

	commit changes and push changes to develop:

	git commit -m "commit message"

	git push --set-upstream origin develop

	merge develop branch in master and tag the release.

	git checkout master

	git merge develop

	git tag -a v1.6.1 -m "Release v1.6.1"

	git push --set-upstream origin master

	git push --set-upstream origin v1.6.1

	draft a new release in GitHub, using the previous release blurb as a base. Highlight new and
noteworthy changes from the CHANGELOG.rst.

	run etc/release/release.sh locally.

	upload the release archives created in the dist/ directory to the GitHub release page.

	save the release as a draft. Use the previous release notes to create notes in the same style.
Ensure that the link to third-party source code is present.

	test the downloads.

	publish the release on GitHub

	then build and publish the released wheel on Pypi. For this you need your own Pypi credentials
(and get authorized to publish Pypi release: ask @pombredanne) and you need to have the twine
package installed and configured.

	Build a .whl with python setup.py bdist_wheel

	Run twine with twine upload dist/<path to the built wheel>

	Once uploaded check the published release at https://pypi.python.org/pypi/scancode-toolkit/

	Then create a new fresh local virtualenv and test the wheel installation with:
pip install scancode-toolkit

Contributing to the Documentation

Continuous Integration

The documentations are checked on every new commit through Travis-CI, so that common errors are
avoided and documentation standards are enforced. Travis-CI presently checks for these 3 aspects
of the documentation :

	Successful Builds (By using sphinx-build)

	No Broken Links (By Using link-check)

	Linting Errors (By Using Doc8)

Style Checks Using Doc8

How To Run Style Tests

In the project root, run the following command:

$ doc8 --max-line-length 100 docs/source/scancode-toolkit

Note

Only the scancode-toolkit documentation style standards are enforced presently.

A sample output is:

Scanning...
Validating...
docs/source/scancode-toolkit/misc/licence_policy_plugin.rst:37: D002 Trailing whitespace
docs/source/scancode-toolkit/misc/faq.rst:45: D003 Tabulation used for indentation
docs/source/scancode-toolkit/misc/faq.rst:9: D001 Line too long
docs/source/scancode-toolkit/misc/support.rst:6: D005 No newline at end of file
========
Total files scanned = 34
Total files ignored = 0
Total accumulated errors = 326
Detailed error counts:
 - CheckCarriageReturn = 0
 - CheckIndentationNoTab = 75
 - CheckMaxLineLength = 190
 - CheckNewlineEndOfFile = 13
 - CheckTrailingWhitespace = 47
 - CheckValidity = 1

Now fix the errors and run again till there isn’t any style error in the documentation.

What is Checked

PyCQA is an Organization for code quality tools (and plugins) for the Python programming language.
Doc8 is a sub-project of the same Organization. Refer this README [https://github.com/PyCQA/doc8/blob/master/README.rst] for more details.

What is checked:

	invalid rst format - D000

	lines should not be longer than 100 characters - D001

	RST exception: line with no whitespace except in the beginning

	RST exception: lines with http or https URLs

	RST exception: literal blocks

	RST exception: rst target directives

	no trailing whitespace - D002

	no tabulation for indentation - D003

	no carriage returns (use UNIX newlines) - D004

	no newline at end of file - D005

Extra Style Checks

	Headings

(Refer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections])
Normally, there are no heading levels assigned to certain characters as the structure is
determined from the succession of headings. However, this convention is used in Python’s Style
Guide for documenting which you may follow:

with overline, for parts

	with overline, for chapters

=, for sections

-, for subsections

^, for sub-subsections

“, for paragraphs

	Heading Underlines

Do not use underlines that are longer/shorter than the title headline itself. As in:

Correct :

Extra Style Checks

Incorrect :

Extra Style Checks

Note

Underlines shorter than the Title text generates Errors on sphinx-build.

	Internal Links

Using :ref: is advised over standard reStructuredText links to sections (like
`Section title`_) because it works across files, when section headings are changed, will
raise warnings if incorrect, and works for all builders that support cross-references.
However, external links are created by using the standard `Section title`_ method.

	Eliminate Redundancy

If a section/file has to be repeated somewhere else, do not write the exact same section/file
twice. Use .. include: ../README.rst instead. Here, ../ refers to the documentation
root, so file location can be used accordingly. This enables us to link documents from other
upstream folders.

	Using :ref: only when necessary

Use :ref: to create internal links only when needed, i.e. it is referenced somewhere.
Do not create references for all the sections and then only reference some of them, because
this created unnecessary references. This also generates ERROR in restructuredtext-lint.

	Spelling

You should check for spelling errors before you push changes. Aspell [http://aspell.net/]
is a GNU project Command Line tool you can use for this purpose. Download and install Aspell,
then execute aspell check <file-name> for all the files changed. Be careful about not
changing commands or other stuff as Aspell gives prompts for a lot of them. Also delete the
temporary .bak files generated. Refer the manual [http://aspell.net/man-html/] for more
information on how to use.

Roadmap

This is a high level list of what we are working on and what is completed.

Legend

[image: white_check_mark] completed [image: clock1030] In progress [image: white_large_square] Planned, not started

Work in Progress

(see Completed features below)

Packages manifests and dependencies parsers

	[image: clock1030] Docker images base (as part of: https://github.com/pombredanne/conan) #651

	[image: clock1030] RubyGems base and dependencies #650 (code in https://github.com/nexB/scancode-toolkit-contrib/)

	[image: clock1030] Perl, CPAN (basic in https://github.com/nexB/scancode-toolkit-contrib/)

	[image: clock1030] Go : parsing for Godep in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Windows PE #652

	[image: white_large_square] RPMs dependencies #649

	[image: white_large_square] Windows Nuget dependencies #648

	[image: white_large_square] Bower packages #654

	[image: white_large_square] Python dependencies #653

	[image: white_large_square] CRAN

	[image: white_check_mark] Plain packages

	[image: white_large_square] other Java-related meta files (SBT, Ivy, Gradle, etc.)

	[image: white_large_square] Debian debs

	[image: white_large_square] other JavaScript (jspm, etc.)

	[image: white_large_square] other Linux distro packages

License Detection

	[image: white_check_mark] support and detect license expressions (code in https://github.com/nexB/license-expression)

	[image: clock1030] support and detect composite licenses

	[image: white_large_square] support custom licenses

	[image: white_large_square] move licenses data set to external separate repository

	[image: white_check_mark] Improved unknown license detection

	[image: white_check_mark] sync with external sources (DejaCode, SPDX, etc.)

Copyrights

	[image: white_check_mark] speed up copyright detection

	[image: white_check_mark] improved detected lines range

	[image: white_check_mark] streamline grammar of copyright parser

	[image: white_check_mark] normalize holders and authors for summarizing

	[image: white_check_mark] normalize and streamline results data format

Core features

	[image: white_check_mark] pre scan filtering (ignore binaries, etc)

	[image: white_check_mark] pre/post/ouput plugins! (worked as part of the GSoC by @yadsharaf)

	[image: white_check_mark] scan plugins (e.g. plugins that run a scan to collect data)

	[image: clock1030] support Python 3 #295

	[image: clock1030] transparent archive extraction (as opposed to on-demand with extractcode)

	[image: clock1030] scancode.yml configuration file for exclusions, defaults, scan failure conditions,
etc.

	[image: white_large_square] support scan pipelines and rules to organize more complex scans

	[image: white_large_square] scan baselining, delta scan and failure conditions (such as license change,
etc) (will be spawned as its own DeltaCode project)

	[image: white_large_square] dedupe and similarities to avoid re-scanning. For now only identical files
are scanned only once.

	[image: white_large_square] Improved logging, tracing and error diagnostics

	[image: clock1030] native support for ABC Data (See AboutCode Data : ABCD)

Classification, summarization and deduction

	[image: white_check_mark] File classification #426

	[image: white_check_mark] summarize and aggregate data #377 at the top level

Source code support (some will be spawned as their own tool)

	[image: clock1030] symbols : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] metrics : some elements in https://github.com/nexB/scancode-toolkit-contrib/

Compiled code support (will be spawned as their own tool)

	[image: clock1030] ELFs : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Java bytecode : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Windows PE : parsing complete in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] Mach-O : parsing complete in in https://github.com/nexB/scancode-toolkit-contrib/

	[image: white_large_square] Dalvik/dex

Data exchange

	[image: white_check_mark] SPDX data conversion #338

Packaging

	[image: white_large_square] simpler installation, automated installer

	[image: white_check_mark] distro-friendly packaging

	[image: white_large_square] unbundle and package as multiple libaries (commoncode, extractcode, etc)

Documentation

	[image: white_large_square] integration in a build/CI loop

	[image: white_large_square] end to end guide to analyze a codebase

	[image: white_large_square] hacking guides

	[image: white_large_square] API doc when using ScanCode as a library

CI integration

	[image: white_large_square] Plugins for CI (Jenkins, etc)

	[image: white_large_square] Integration for CI (Travis, Appveyor, Drone, etc)

Other work in progress

	ScanCode server: Spawned as its own project: https://github.com/nexB/scancode-server. Will
include Integration / webhooks for Github, Bitbucket.

	VulnerableCode: NVD and CVE lookups: Spawned as its own project: https://github.com/nexB/vulnerablecode

	ScanCode Workbench: desktop app for scan review: Spawned as its own project:
https://github.com/nexB/scancode-workbench

	DependentCode: dynamic dependencies resolutions: Spawned as its own project:
https://github.com/nexB/dependentcode

Package mining and matching

(Note that this will be spawned in its project)
Some code is in https://github.com/nexB/scancode-toolkit-contrib/

	[image: clock1030] exact matching

	[image: clock1030] attribute-based matching

	[image: clock1030] fuzzy matching

	[image: white_large_square] peer-reviewed meta packages repo

	[image: white_large_square] basic mining of package repositories

Other

	[image: white_large_square] Crypto code detection

Completed features

Core scans

	[image: white_check_mark] exact license detection

	[image: white_check_mark] approximate license detection

	[image: white_check_mark] copyright detection

	[image: white_check_mark] file information (size, type, etc.)

	[image: white_check_mark] URLs, emails, authors

Outputs and UI

	[image: white_check_mark] JSON compact and pretty

	[image: white_check_mark] plain HTML tables, also usable in a spreadsheet

	[image: white_check_mark] fancy HTML ‘app’ with a file tree navigation, and scan results filtering,
search and sorting

	[image: white_check_mark] improved scans GUI now its own project: https://github.com/nexB/aboutcode-manager

	[image: white_check_mark] simple scan summary

	[image: white_check_mark] SPDX output

Package and dependencies

	[image: white_check_mark] common model for packages data

	[image: white_check_mark] basic support for common packages format

	[image: white_check_mark] RPM packages base

	[image: white_check_mark] NuGet packages base

	[image: white_check_mark] Python packages base

	[image: white_check_mark] PHP Composer packages support with dependencies

	[image: white_check_mark] Java Maven POM packages support with dependencies

	[image: white_check_mark] npm packages support with dependencies

Speed!

	[image: white_check_mark] accelerate license detection indexing and scanning; include caching

	[image: white_check_mark] scan using multiple processes to speed up overall scan

	[image: white_check_mark] cache per-file scan to disk and stream final results

Other

	[image: white_check_mark] archive extraction with extractcode

	[image: white_check_mark] conversion of scan results to CSV

	[image: white_check_mark] improved error handling, verbose and diagnostic output

Google Summer of Code 2017 - Final report

Project: Plugin architecture for ScanCode

Yash D. Saraf yashdsaraf@gmail.com

This project’s purpose was to create a decoupled plugin architecture for
ScanCode [https://github.com/nexB/scancode-toolkit] such that it can handle plugins at different
stages of a scan and can be coupled at runtime. These stages were,

1. Format [https://github.com/nexB/scancode-toolkit/issues/639] :

In this stage, the plugins are supposed to run after the scanning is done and post-scan
plugins are called. These plugins could be used for:

	converting the scanned output to the given format (say csv, json, etc.)

HOWTO

Here, a plugin needs to add an entry in the scancode_output_writers entry point in the following
format : '<format> = <module>:<function>'.

	<format> is the format name which will be used as the command line option name
(e.g csv or json).

	<module> is a python module which implements the output hook specification.

	<function> is the function to which the scan output will be passed if this plugin is called.

The <format> name will be automatically added to the --format command line option and
(if called) the scanned data will be passed to the plugin.

2. Post-scan [https://github.com/nexB/scancode-toolkit/issues/704] :

In this stage, the plugins are supposed to run after the scanning is done. Some uses for these
plugins were:

	summarization of scan outputs

e.g A post-scan plugin for marking is_source to true for directories with ~90% of source
files.

	simplification of scan outputs

e.g The --only-findings option to return files or directories with findings for the
requested scans. Files and directories without findings are omitted (not considering basic file
information as findings)).

This option already existed, I just ported it to a post-scan plugin.

HOWTO

Here, a plugin needs to add an entry in the scancode_post_scan entry point in the following
format '<name> = <module>:<function>'

	<name> is the command line option name (e.g only-findings).

	<module> is a python module which implements the post_scan hook specification.

	<function> is the function to which the scanned files will be passed if this plugin is called

The command line option for this plugin will be automatically created using the <function> ‘s
doctring as its help text and (if called) the scanned files will be passed to the plugin.

3. Pre-scan [https://github.com/nexB/scancode-toolkit/issues/719] :

In this stage, the plugins are supposed to run before the scan starts. So the potential uses
for these types of plugins were to:

	ignore files based on a given pattern (glob)

	ignore files based on their info i.e size, type etc.

	extract archives before scanning

HOWTO

Here, a plugin needs to add an entry in the scancode_pre_scan entry point in the following
format : '<name> = <module>:<class>'

	<name> is the command line option name (e.g ignore).

	<module> is a python module which implements the pre_scan hook specification.

	<class> is the class which is instantiated and its appropriate method is invoked if this
plugin is called. This needs to extend the plugincode.pre_scan.PreScanPlugin class.

The command line option for this plugin will be automatically created using the <class> ‘s
doctring as its help text. Since there isn’t a single spot where pre-scan plugins can be
plugged in, more methods to PreScanPlugin class can be added which can represent different
hooks, say to add or delete a scan there might be a method called process_scan.

If a plugin’s option is passed by the user, then the <class> is instantiated with the user
input and its appropriate aforementioned methods are called.

4. Scan (proper):

In this stage, the plugins are supposed to run before the scan starts and after the
pre-scan plugins are called. These plugins would have been used for

	adding or deleting scans

	adding dependency scans (whose data could be used in other scans)

No development has been done for this stage, but it will be quite similar to pre-scan.

5. Other work:

Group cli options in cli help [https://github.com/nexB/scancode-toolkit/issues/709]

Here, the goal was to add command line options to pre-defined groups such that they are displayed
in their respective groups when scancode -h or scancode --help is called. This helped to
better visually represent the command line options and determine more easily what context they
belong to.

Add a Resource class to hold all scanned info [https://github.com/nexB/scancode-toolkit/issues/738]
* Ongoing *

Here, the goal was to create a Resource class, such that it holds all the scanned data for a
resource (i.e a file or a directory). This class would go on to eventually encapsulate the caching
logic entirely. For now, it just holds the info and path of a resource.

6. What’s left?

	Pre-scan plugin for archive extractions

	Scan (proper) plugins

	More complex post-scan plugins

	Support plugins written in languages other than python

Additionally, all my commits can be found here [https://github.com/nexB/scancode-toolkit/commits/develop?author=yashdsaraf].

Miscellaneous

	FAQ
	Why ScanCode?

	Can licenses be synchronized with the DejaCode license library?

	How is ScanCode different from licensecheck?

	How can I integrate ScanCode in my application?

	Can I install ScanCode in a Unicode path?

	The line numbers for a copyright found in a binary are weird. What do they mean?

	Support
	Documentation

	Issue Tracker

	StackOverflow

	Talk to the Developers

	Documentation

	Runtime Performance Reports

	Plugin Architecture
	Abstract:

	Description:

	Existing solutions:

	License Policy Plugin
	Policy File Specification

	Using the Plugin

	Example Output

FAQ

Why ScanCode?

We could not find an existing tool (open source or commercial) meeting our needs:

	usable from the command line or as library

	running on Linux, Mac and Windows

	written in a higher level language such as Python

	easy to extend and evolve

Can licenses be synchronized with the DejaCode license library?

The license keys are the same that are used in DejaCode. They are kept in sync by hand in the
short term. There is also a ticket to automate that sync with DejaCode and possibly other sources.
See https://github.com/nexB/scancode-toolkit/issues/41

How is ScanCode different from licensecheck?

At a high level, ScanCode detects more licenses and copyrights than licensecheck does, reporting
more details about the matches. It is likely slower.

In more details: ScanCode is a Python app using a data-driven approach (as opposed to carefully
crafted regex):

	for license scan, the detection is based on a (large) number of license full texts (~900) and
license notices/rules (~1800) and is data driven as opposed to regex-driven. It detects exactly
where in a file a license text is found. Just throw in more license texts to improve the
detection.

	for copyright scan, the approach is natural language parsing (using NLTK) with POS tagging and
a grammar; it has a few thousand tests.

	licenses and copyrights are detected in texts and binaries

Licensecheck (available here for reference: /https://metacpan.org/release/App-Licensecheck)
is a Perl script using hand-crafted regex patterns to find typical copyright statements and
about 50 common licenses. There are about 50 license detection tests.

A quick test (in July 2015, before a major refactoring, but for this notice still valid) shows
several things that are not detected by licensecheck that are detected by ScanCode.

How can I integrate ScanCode in my application?

More specifically, does this tool provide an API which can be used by us for the integration
with my system to trigger the license check and to use the result?

In terms of API, there are two stable entry points:

#. The JSON output when you use it as a command line tool from any language or when you call
the scancode.cli.scancode function from a Python script.
#. Otherwise the scancode.cli.api module provides a simple function if you are only interested
in calling a certain service on a given file (such as license detection or copyright detection)

Can I install ScanCode in a Unicode path?

Not for now. See https://github.com/nexB/scancode-toolkit/issues/867 There is a bug in virtualenv
on Python2 https://github.com/pypa/virtualenv/issues/457 At this stage and until we completed the
migration to Python 3 there is no way out but to use a path that contains only ASCII characters.

The line numbers for a copyright found in a binary are weird. What do they mean?

When scanning binaries, the line numbers are just a relative indication of where a detection was
found: there is no such thing as lines in a binary. The numbers reported are based on the strings
extracted from the binaries, typically broken as new lines with each NULL character. They can be
safely ignored.

Support

Documentation

The ScanCode toolkit documentation lives at aboutcode.readthedocs.io/en/latest/scancode-toolkit/.

Issue Tracker

Post questions and bugs as GitHub tickets at: https://github.com/nexB/scancode-toolkit/issues

StackOverflow

Ask question on StackOverflow using the [scancode] tag.

Talk to the Developers

Join our Gitter Channel [https://gitter.im/aboutcode-org/discuss] to talk with the developers of
ScanCode Toolkit.

Documentation

For more information on Documentation or to leave feedback mail at aboutCode@groups.io, or leave a
message at our Docs Channel [https://gitter.im/aboutcode-org/gsod-season-of-docs].

Runtime Performance Reports

These are reports of runtimes for real life scans:

2015-09-03 by @rrjohnston

	On Ubuntu 12.04 x86_64 Python 2.7.3 and ScanCode Version 1.3.1

	Specs: 40 threads (2 processors, 10 cores each, with hyperthreading) 3.1 GHz 128GB RAM 8TB
controller RAID5

	scanned 195676 files in about 16.7 hours or about 3.25 file per second
(using defaults licenses and copyrights)

	notes: this version of ScanCode runs on a single thread so it does not make good use of
extra processing power.

Plugin Architecture

Abstract:

This project’s purpose is to create a decoupled plugin architecture for scancode such that it can
handle plugins at different stages of a scan and can be coupled at runtime. These stages would be

	Pre - scan: Before starting the scan

E.g Plugins to handle extraction of different archive types or instructions on how to handle
certain types of files.

	Scan proper: During the scan

E.g Plugins to add more options for the scan, maybe to ignore certain files or add some
command line arguments, create new scans (alternative or as a dependency for further scanning) etc.

	Post - scan: After the scan

E.g Plugins for output deduction, formatting or converting output to other formats
(such as json, spdx, csv, xml, etc.)

Upside of building a pluggable system would be to allow easier additions and rare modifications
to code, without having to really fiddle around with core codebase. This will also provide a level
of abstraction between the plugins and scancode so that any erroneous plugin would not affect the
functioning of scancode as a whole.

Description:

This project aims at making scancode a “pluggable” system, where new functionalities can be added
to scancode at runtime as “plugins”. These plugins can be hooked into scancode using some
predefined hooks. I would consider pluggy as the way to go for a plugin management system.

Why pluggy?

Pluggy is well documented and maintained regularly, and has proved its worth in projects such as
py.test. Pluggy relies on hook specifications and hook implementations (callbacks) instead of the
conventional subclassing approach which may encourage tight-coupling in the overlying framework.
Basically a hook specification contains method signatures (no code), these are defined by the
application. A hook implementation contains definitions for methods declared in the corresponding
hook specification implemented by a plugin.

As mentioned in the abstract, the plugin architecture will have 3 hook specifications (can be
increased if required)

1. Pre - scan hook

	Structure -

prescan_hookspec = HookspecMarker('prescan')

@prescan_hookspec
def extract_archive(args):

Here the path of the archive to be extracted will be passed as an argument to the extract_archive
function which will be called before scan, at the time of extraction. This will process the archive
type and extract the contents accordingly. This functionality can be further extended by calling
this function if any archive is found inside the scanning tree.

2. Scan proper hook

	Structure

scanproper_hookspec = HookspecMarker('scanproper')

@scanproper_hookspec
def add_cmdline_option(args):

This function will be called before starting the scan, without any arguments, it will return a dict
containing the click extension details and possibly some help text. If this option is called by the
user then the call will be rerouted to the callback defined by the click extension. For instance
say a plugin implements functionality to add regex as a valid ignore pattern, then this function
will return a dict as:

{
 'name': '--ignore-regex',
 'options' : {
 'default': None,
 'multiple': True,
 'metavar': <pattern>
 },
 'help': 'Ignore files matching regex <pattern>'
 'call_after': 'is_ignored'
}

According to the above dict, if the option –ignore-regex is supplied, this function will be called
after the is_ignored function and the data returned by the is_ignored function will be supplied to
this function as its argument(s). So if the program flow was:

scancode() ⇔ scan() ⇔ resource_paths() ⇔ is_ignored()

It will now be edited to

scancode() ⇔ scan() ⇔ resource_paths() ⇔ is_ignored() ⇔ add_cmdline_option()

Options such as call_after, call_before, call_first, call_last can be defined to determine
when the function is to be executed.

@scanproper_hookspec
def dependency_scan(args):

This function will be called before starting the scan without any arguments, it will return a
list of file types or attributes which if encountered in the scanned tree, will call this function
with the path to the file as an argument. This function can do some extra processing on those files
and return the data to be processed as a dependency for the normal scanning process.
E.g. It can return a list such as:

['debian/copyright']

Whenever a file matches this pattern, this function will be called and the data returned will be
supplied to the main scancode function.

3. Post - scan hook

	Structure -

postscan_hookspec = HookspecMarker('postscan')

@postscan_hookspec
def format_output(args):

This function will be called after a scan is finished. It will be supplied with path to the ABC
data generated from the scan, path to the root of the scanned code and a path where the output is
expected to be stored. The function will store the processed data in the output path supplied.
This can be used to convert output to other formats such as CSV, SPDX, JSON, etc.

@postscan_hookspec
def summarize_output(args):

This function will be called after a scan is finished. It will be supplied the data to be reported
to the user as well as a path to the root of the scanned node. The data returned can then be
reported to the user. This can be used to summarize output, maybe encapsulate the data to be
reported or omit similar file metadata or even classify files such as tests, code proper, licenses,
readme, configs, build scripts etc.

	Identifying or configuring plugins

For python plugins, pluggy supports loading modules from setuptools entrypoints,
E.g.

entry_points = {
 'scancode_plugins': [
 'name_of_plugin = ignore_regex',
]
}

This plugin can be loaded using the PluginManager class’s
load_setuptools_entrypoints(‘scancode_plugins’) method which will return a list of loaded plugins.

For non python plugins, all such plugins will be stored in a common directory and each of these
plugins will have a manifest configuration in YAML format. This directory will be scanned at
startup for plugins. After parsing the config file of a plugin, the data will be supplied to the
plugin manager as if it were supplied using setuptools entrypoints.

In case of non python plugins, the plugin executables will be spawned in their own processes and
according to their config data, they will be passed arguments and would return data as necessary.
In addition to this, the desired hook function can be called from a non python plugin using certain
arguments, which again can be mapped in the config file.

Sample config file for a ignore_regex plugin calling scanproper hook would be:

name: ignore_regex
hook: scanproper
hookfunctions:
 add_cmdline_option: '-aco'
 dependency_scan: '-dc'
data:
 add_cmdline_option':
 - name: '--ignore-regex'
 - options:
 - default: None
 - multiple: True
 - metavar: <pattern>
 - help: 'Ignore files matching regex <pattern>'
 - call_after: 'is_ignored'

Existing solutions:

An alternate solution to a “pluggable” system would be the more conventional approach of adding
functionalities directly to the core codebase, which removes the abstraction layer provided by
a plugin management and hook calling system.

License Policy Plugin

This plugin allows the user to apply policy details to a scancode scan, depending on which
licenses are detected in a particular file. If a license specified in the Policy file is
detected by scancode, this plugin will apply that policy information to the Resource as a new
attribute: license_policy.

Policy File Specification

The Policy file is a YAML (.yml) document with the following struture:

license_policies:
- license_key: mit
 label: Approved License
 color_code: '#00800'
 icon: icon-ok-circle
- license_key: agpl-3.0
 label: Approved License
 color_code: '#008000'
 icon: icon-ok-circle
- license_key: broadcom-commercial
 label: Restricted License
 color_code: '#FFcc33'
 icon: icon-warning-sign

The only required key is license_key, which represents the scancode license key to match
against the detected licenses in the scan results.

In the above example, a descriptive label is added along with a color code and CSS id name
for potential visual display.

Using the Plugin

To apply License Policies during a ScanCode scan, specify the --license-policy option.

For example, use the following command to run a File Info and License scan on
/path/to/codebase/, using a License Policy file found at ~/path/to/policy-file.yml:

$ scancode -clipeu /path/to/codebase/ --license-policy ~/path/to/policy-file.yml --json-pp
 ~/path/to/scan-output.json

Example Output

Here is an example of the ScanCode output after running --license-policy:

{
 "path": "samples/zlib/deflate.c",
 "type": "file",
 "licenses": [
 {
 "key": "zlib",
 ...
 ...
 ...
 }
],
 "license_policy": {
 "license_key": "zlib",
 "label": "Approved License",
 "color_code": "#00800",
 "icon": "icon-ok-circle"
 },
 "scan_errors": []
 }

Scancode-Workbench Documentation

ScanCode Workbench allows you take the scan results from the ScanCode Toolkit and create a software inventory annotated with your summaries or conclusions (we call these Conclusions) at any levels of the codebase you choose.

The attributes you add (e.g., Name, Version, Owner, License Expression, Copyright) to your Conclusion about a single package or file – or a higher-level group of packages and/or files – can then be exported to a JSON or SQLite file. In addition, Conclusions created in ScanCode Workbench can be exported to DejaCode [https://enterprise.dejacode.com/licenses/].

	Basics
	Scancode Workbench Views
	Directory Tree

	Table View

	Chart Summary View

	Building Requirements
	Linux

	MacOS

	Windows

	ScanCode Workbench Platform Support
	Electron Supported Platforms

	Check for Errors in the Developer Tools

	Tutorials
	Creating Conclusions
	Conclusion Definitions

	Importing and Exporting a JSON File
	Import a ScanCode JSON File

	Export a JSON file

	License Policy support in ScanCode Workbench
	The basics

	Navigating the Chart Summary View
	Display the view

	Select an attribute

	Filter Chart Summary

	Opening and Saving a SQlite File
	Open a SQLite File

	Save as a New SQLite File

Basics

	Scancode Workbench Views
	Directory Tree

	Table View

	Chart Summary View

	Building Requirements
	Linux

	MacOS

	Windows

	ScanCode Workbench Platform Support
	Electron Supported Platforms
	MacOS

	Windows

	Linux

	Check for Errors in the Developer Tools

Scancode Workbench Views

Directory Tree

An interactive directory tree is always present on the left side of the application. The tree is expandable and collapsible. This allows the user to navigate the codebase structure. If a directory is selected, only that directory and its sub-files and folders will be shown in the view. Similarly, if a single file is selected, only information for that selected file will be shown.

[image: ../../_images/navigate-code-tree.gif]

Table View

In the table view, the available clues detected by ScanCode [https://github.com/nexB/scancode-toolkit/] are shown in a tabular format. A user can see provenance clues such as license and copyright information detected by ScanCode. A user can also see the file information (e.g. file type, file size, etc) and package information (package type, primary language of package) that was detected. The columns can be sorted as well as shown or hidden based on what the user’s preferences. Searching for specific clues (license names, copyrights, etc.) is also available in this view.

[image: ../../_images/table-view.gif]

Chart Summary View

With the chart summary view, a user can select a node in the directory tree (i.e., a directory, folder or file) and display a horizontal bar chart listing the values identified in the scanned codebase – that is, the clues detected by ScanCode Toolkit – for a number of different attributes. The attributes are a subset of the columns displayed in the table view, and can be selected by clicking the dropdown at the top of the view. The chart displays the full range of values for the selected directory tree node and attribute and the number of times each value occurs in the scanned codebase.

[image: ../../_images/scancode-workbench-chart-summary.gif]

Building Requirements

Linux

	Python 2.7

	Node.js version [https://nodejs.org/en/download/package-manager/] 6.x or later

	npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)

MacOS

	Python 2.7

	Node.js [https://nodejs.org/en/] >=6.x or later but <=8.9.4

	npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)

	Command Line Tools for Xcode [https://developer.apple.com/xcode/downloads/] (run xcode-select --install to install)

Windows

	Node.js [https://nodejs.org/en/] 6.x or later

	npm 3.10.x or later but <= 5.2.0 (run npm install npm@5.2.0 -g)

	Python v2.7.x

	Make sure your Python path is set. To verify, open a command prompt and type python --version. Then, the version of python will be displayed.

	Visual C++ Build Environment:

	Either:

	Option 1: Install Visual C++ Build Tools 2015 [https://www.microsoft.com/en-in/download/details.aspx?id=48159] (or modify an existing installation) and select Common Tools for Visual C++ during setup. This also works with the free Community and Express for Desktop editions.

	Option 2: Visual Studio 2015 [https://visualstudio.microsoft.com/vs/older-downloads/] (Community Edition or better)

	Note: Windows 7 requires .NET Framework 4.5.1 [http://www.microsoft.com/en-us/download/details.aspx?id=40773]

	Launch cmd, npm config set msvs_version 2015

ScanCode Workbench Platform Support

Our approach for platform support is to focus on one primary release for each of Linux, MacOS and Windows. The Priority definitions are:

	Primary - These are the primary platforms for build/test/release on an ongoing basis.

	Secondary - These are platforms where the primary ScanCode Workbench release for the corresponding OS Group should be forward-compatible, e.g., Windows 7 build should work on Windows 10. Issues reported and traced to a Secondary platform may not be fixed.

	Tertiary - These are any other platforms not listed as Primary or Secondary. In these cases, we will help users help themselves, but we are likely not to fix Issues that only surface on a Tertiary platform.

	OS Group

	Desktop OS
Version

	Arch

	Priority

	Notes

	Windows

	Windows 7 SP1

	x64

	1

	

	Windows

	Windows 10 SP?

	x64

	2

	

	MacOS

	10.9 Mavericks

	x64

	1

	

	MacOS

	10.10 Yosemite

	x64

	2

	

	MacOS

	10.11 El Capitan

	x64

	2

	

	MacOS

	10.12 Sierra

	x64

	2

	

	Linux Deb

	Ubuntu 12.04

	x64

	1

	From Electron Docs: The prebuilt ia32
(i686) and x64 (amd64) binaries of
Electron are built on Ubuntu 12.04.

	Linux Deb

	Ubuntu 14.xx

	x64

	2

	Verified to be able to run the prebuilt
binaries of Electron.

	Linux Deb

	Ubuntu 16.xx

	x64

	2

	Verified to be able to run the prebuilt
binaries of Electron.

	Linux

	Fedora 21

	x64

	2

	Verified to be able to run the prebuilt
binaries of Electron.

	Linux

	Debian 8

	x64

	2

	Verified to be able to run the prebuilt
binaries of Electron.

	Linux RH

	CentOS 7.xx

	x64

	?

	

	Linux RH

	RHEL 7.xx

	x64

	?

	

Electron Supported Platforms

https://electronjs.org/docs/tutorial/support#supported-platforms

The following platforms are supported by Electron:

MacOS

Only 64-bit binaries are provided for MacOS, and the minimum MacOS version supported is MacOS 10.9.

Windows

Windows 7 and later are supported, while older operating systems are not supported (and do not work). Both ia32 (x86) and x64 (amd64) binaries are provided for Windows. Please note: the ARM version of Windows is not supported for now.

Linux

The prebuilt ia32 (i686) and x64 (amd64) binaries of Electron are built on Ubuntu 12.04, and the ARM binary is built against ARM v7 with hard-float ABI and NEON for Debian Wheezy.

Whether the prebuilt binary can run on a distribution depends on whether the distribution includes the libraries that Electron is linked to on the building platform, so only Ubuntu 12.04 is guaranteed to work, but the following platforms are also verified to be able to run the prebuilt binaries of Electron:

	Ubuntu 12.04 and later

	Fedora 21

	Debian 8

Check for Errors in the Developer Tools

When an unexpected error occurs in ScanCode Workbench, you will normally see a dialog message which provides details about the error and allows you to create an issue.

[image: ../../_images/dialog-error.png]
If you can reproduce the error, use this approach to get the stack trace and report the issue. Open the Developer Tools with Ctrl+Shift+I or Alt+Cmd+I. From there, click the Console tab. Include the error that is logged in the issue in a code block or a file attachment.

[image: ../../_images/developer-tools-error.png]

Tutorials

	Creating Conclusions
	Conclusion Definitions

	Importing and Exporting a JSON File
	Import a ScanCode JSON File

	Export a JSON file

	License Policy support in ScanCode Workbench
	The basics

	Navigating the Chart Summary View
	Display the view

	Select an attribute

	Filter Chart Summary

	Opening and Saving a SQlite File
	Open a SQLite File

	Save as a New SQLite File

Creating Conclusions

A Conclusion in ScanCode Workbench refers to the documentation of your analysis and conclusions about the name, version, owner, copyright, license expression and other attributes for a single software package or file or – if you conclude these attributes are shared by a group of packages and/or files – for that group of packages/files.

You can record your Conclusions throughout the codebase you’re analyzing, at any level of the codebase (i.e., nodes in the directory tree representing the codebase) you think will best reflect the results of your analysis.

To create a Conclusion, begin by navigating to the ScanDataTable view.

[image: ../../_images/scandatatable-01.png]
In the directory tree on the left, choose the directory, package or file you want to annotate, right-click that node, and select Edit Conclusion in the menu that appears. This will display a form with the path to that node displayed at the top of the form, and a series of attribute names (e.g., Status, Name, Version, License Expression, Owner, Copyright) and associated textboxes, dropdowns or radio buttons to record your input.

[image: ../../_images/conclusion-form-01.png]

Conclusion Definitions

The following fields are available when creating a Conclusion:

	Conclusion Field

	Description

	Status

	Used to document status of Conclusion creation. The dropdown choices: Analyzed - A Conclusion has been created, Needs Attention - A Conclusion is flagged for further review, Original Code - A Conclusion references code from your organization, Not Reporting - A Conclusion that will not be reported and can be ignored.

	Name

	The primary name for your Conclusion (usually a file, directory or library name). A Conclusion can represent any software-related object. Any Conclusion can contain one or more sub-Conclusions. The combined Conclusion Name and Version must be unique.

	Version

	The Conclusion version number.

	License Expression

	This is the overall license (an individual license or combination of several licenses) for the Conclusion. The Conclusion form will populate a dropdown with any License Expression data detected by ScanCode when the imported scan was run, using the ScanCode License Expression syntax (e.g., gpl-2.0 represents the GPL 2.0 license). The user can also manually add one or more License Expressions by typing in the textbox and then hitting the Enter key. The License Expression is intended to capture the facts of a license (primarily the text, as provided by its owner), as well as an organization’s interpretation and policy regarding that license.

	Owner

	An Owner identifies the original creator (copyright holder) of the code covered by the Conclusion. If this Conclusion code is in its original, unmodified state, the Conclusion owner is associated with the original author/publisher. If this Conclusion code has been copied and modified, the Conclusion owner should be the owner that has copied and modified it.

	Copyright

	The Copyright notice that applies to the Conclusion code under the License Expression.

	Modified

	A Yes/No choice indicating whether the Conclusion code has been modified.

	Deployed

	A Yes/No choice indicating whether the Conclusion code has been deployed.

	Code Type

	The default choices are Source, Binary, Mixed and Document.

	Notes

	Any notes or comments the user wants to record.

	Feature

	The name of a product feature or codebase module that applies to the code covered by the Conclusion.

	Purpose

	The type of code covered by the Conclusion, e.g., Core, Test, Build, Documentation.

	Programming Language

	The primary language of the Conclusion code.

	Homepage URL

	The homepage URL for the Conclusion code.

	Download URL

	The download URL for the original Conclusion code.

	License URL

	The URL for the primary license represented by the License Expression.

	Notice URL

	The URL for the license notice that applies to the code covered by the Conclusion.

Importing and Exporting a JSON File

Import a ScanCode JSON File

[image: ../../_images/import-json-file.gif]

	We have provided a set of sample scans that you can quickly review in ScanCode Workbench in order to get a sense of its functionality and the types of information captured by a scan. The samples are located at https://github.com/nexB/scancode-workbench/tree/develop/samples.

	To import a ScanCode JSON file:

	Open the File menu and select Import JSON File (keyboard shortcut: Ctrl+I or ⌘+I).

	In the dialog window that opens, navigate to the JSON file you want to import, select the file and click Open.

	You will then be prompted to choose a filename and location to save the JSON file as a SQLite database file. Add a filename, select the folder in which you want to save the SQLite database file, and click Save.

	ScanCode Workbench will then create a SQLite database file from your JSON file, indicated by the status message “Creating Database …”

	Once the process has finished, the status message will be replaced by an expandable code tree and, to the right of the tree, a table displaying provenance information generated by ScanCode.

Export a JSON file

	To export a JSON file:

	Select the File menu and then select Export JSON File (keyboard shortcut: Ctrl+E or ⌘+E).

	In the dialog window that opens, add a name for the file, navigate to the directory in which you want to save the file and click Save.

License Policy support in ScanCode Workbench

ScanCode Workbench now has basic support for tracking and viewing license policies that have been applied to a scancode-toolkit scan. In order for things to work, your initial scancode scan must be run with the --license-policy option. You can read more about that here: License Policy Plugin.

The basics

While the License Policy Plugin can be customized with any number of custom fields and values, ScanCode Workbench currently only supports a pre-defined set of policy labels.

	license_key

	label

	scancode_license_key

	Approved License

	scancode_license_key

	Prohibited License

	scancode_license_key

	Recommended License

	scancode_license_key

	Restricted License

This means in order to take advantage of ScanCode Workbench’s policy features, your license-policy.yml needs to have license_key and label fields at the very least.

Additionally, in order to take advantage of policy visualizations, label values must be one of the 4 above values: Approved License, Prohibited License, Recommended License or Restricted License. Later versions of ScanCode Workbench will eventually evolve to support more dynamic policy values.

Here is a simple example of a valid license-policy.yml file:

license_policies:
- license_key: apache-2.0
 label: Approved License
- license_key: apache-1.1
 label: Prohibited License
- license_key: lgpl-2.1-plus
 label: Recommended License
- license_key: cpl-1.0
 label: Restricted License

After running a scan with that particular license-policy.yml file, viewing the scan in ScanCode Workbench will look like the following:

[image: ../../_images/policy-view.png]
As you can see, files which have detected licenses that fall under a particular policy will be shown in the JSTree view with specific icons. This way, you are able to quickly see what files fall under a specific policy.

Additionally, policy details can be found in the scan data view in their own column: License Policy. This column has been added to both the “Origin” column set and “License info” column set.

Navigating the Chart Summary View

Display the view

Once you have a SQLite file loaded into ScanCode Workbench, displaying the Chart
Summary View is easy:

	Select a file or directory in the Tree View on the left.

	Click the chart icon in the sidebar or open the View menu and select
Chart Summary View (keyboard shortcut: Ctrl+Shift+D or
⌘+Shift+D).

Select an attribute

[image: ../../_images/scancode-workbench-chart-summary1.gif]
Use the dropdown at the top of the view to select the attribute you want to
examine (e.g., Copyright Statements, License Key). These attribute values
are detected from ScanCode, and can also be viewed in the Table View.

When you select an attribute, the Chart Summary View will automatically refresh
to display a horizontal bar chart showing – in descending order of frequency –
each value identified in the scanned codebase for the selected attribute and the
number of times it occurs in the codebase. You can also see the value for a
particular entry in the bar chart in a tooltip that appears when you move your
cursor over the text on the left or the bar on the right.

Filter Chart Summary

[image: ../../_images/scancode-workbench-chart-summary-filter.gif]
You can further filter the summary results by choosing a specific directory or
file in the Tree View. The chart will then only show results for that selected
directory or file.

Opening and Saving a SQlite File

Open a SQLite File

	To open a SQLite File:

	Select the File menu and then select Open SQLite File (keyboard shortcut: Ctrl+O or ⌘+O).

	In the dialog window that opens, navigate to the SQLite file you want to open, select the file and click Open.

Save as a New SQLite File

	To save as a new SQLite file:

	Select the File menu and then select Save As New SQLite File (keyboard shortcut: Ctrl+S or ⌘+S).

	In the dialog window that opens, add a name for the file, navigate to the directory in which you want to save the file and click Save.

Deltacode Documentation

Welcome to Deltacode Documentation.

	Comprehensive Installation
	System Requirements

	Prerequisites

	Installation on Linux and Mac

	Installation on Windows

	Un-installation

	Deltacode Output: Format, Fields and Structure
	Output Formats

	Overall Structure

	Deltacode Scoring
	Delta Objects

	License Additions and Changes

	Copyright Holder Additions and Changes

	Moved, Removed and Unmodified

	Development
	Code layout and conventions

	JSON to CSV Conversion

	Release Process
	Steps to cut a new release:

Comprehensive Installation

DeltaCode requires Python 2.7.x and is tested on Linux, Mac, and Windows. Make sure Python 2.7 is installed first.

System Requirements

	Hardware : DeltaCode will run best with a modern X86 processor and at least 1GB of RAM and 250MB of disk.

	Supported operating systems : DeltaCode should run on these OSes:

	Linux: on most recent 64-bit Linux distributions (32-bit distros are only partially supported),

	Mac: on recent Mac OSX (10.6.8 and up),

	Windows: on Windows 7 and up (32- or 64-bit) using a 32-bit Python.

Prerequisites

DeltaCode needs a Python 2.7 interpreter.

	On Linux:

Use your package manager to install python2.7. If Python 2.7 is not available from your package manager, you must compile it from sources.

For instance, visit https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6 for instructions to compile Python from sources on Centos.

	On Windows:

Use the Python 2.7 32-bit (e.g. the Windows x86 MSI installer) for X86 regardless of whether you run Windows on 32-bit or 64-bit. DO NOT USE Python X86_64 installer even if you run 64 bit Windows.

Download Python from this url:
https://www.python.org/ftp/python/2.7.14/python-2.7.14.msi

Install Python on the c: drive and use all default installer options.
See the Windows installation section for more installation details.

	On Mac:

Download and install Python from this url:

https://www.python.org/ftp/python/2.7.14/python-2.7.14-macosx10.6.pkg

Installation on Linux and Mac

Download and extract the latest ScanCode release from:
https://github.com/nexB/deltacode/releases/latest

Open a terminal in the extracted directory and run:

./deltacode --help

This will configure DeltaCode and display the command line help.

Installation on Windows

Download the latest ScanCode release zip file from:
https://github.com/nexB/deltacode/releases/latest

	In Windows Explorer, select the downloaded DeltaCode zip and right-click.

	In the pop-up menu select ‘Extract All…’

	In the pop-up window ‘Extract zip folders’ use the default options to extract.

	Once the extraction is complete, a new Windows Explorer window will pop-up.

	In this Explorer window, select the new folder that was created and right-click.

	In the pop-up menu select ‘Properties’

	In the pop-up window ‘Properties’, select the Location value. Copy this in clipboard.

	Press the start menu button.

	In the search box type

cmd

	Select ‘cmd.exe’ listed in the search results.

	A new ‘cmd.exe’ window pops-up.

	In this window (aka. a command prompt), type this (this is ‘cd’ followed by a space)

cd

	then right-click in this window and select Paste. This will paste the path where you extracted DeltaCode.

	Press Enter.

	This will change the current location of your command prompt to the root directory where DeltaCode is installed.

	Then type

deltacode --help

	Press enter. This will configure your DeltaCode installation.

	Several messages are displayed followed by the deltacode command help.

	The installation is complete.

Un-installation

	Delete the directory in which you extracted DeltaCode.

	Delete any temporary files created in your system temp directory under a deltacode directory.

Deltacode Output: Format, Fields and Structure

Usage: deltacode [OPTIONS]

 Identify the changes that need to be made to the 'old' scan file (-o or --old)
 in order to generate the 'new' scan file (-n or --new). Write the results to
 a .json file (-j or --json-file) at a user-designated location. If no file
 option is selected, print the JSON results to the console.

Options:
 -h, --help Show this message and exit.
 --version Show the version and exit.
 -n, --new PATH Identify the path to the "new" scan file [required]
 -o, --old PATH Identify the path to the "old" scan file [required]
 -j, --json-file FILENAME Identify the path to the .json output file
 -a, --all-delta-types Include unmodified files as well as all changed
 files in the .json output. If not selected, only
 changed files are included.

Output Formats

DeltaCode provides two output formats for the results of a DeltaCode codebase comparison: JSON and CSV.

The default output format is JSON. If the command-line input does not include an output flag (-j or --json-file) and the path to the output file, the results of the DeltaCode comparison will be displayed in the console in JSON format. Alternatively, the results will be saved to a .json file if the user includes the -j or --json-file flag and the output file’s path,
e.g.:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] -j [path to the JSON output file]

Once a user has generated a DeltaCode JSON output file, he or she can convert that JSON output to CSV format by running a command with this structure::

python etc/scripts/json2csv.py [path to the JSON input file] [path to the CSV output file]

See also JSON to CSV Conversion.

Overall Structure

JSON

Top-Level JSON

DeltaCode’s JSON output comprises the following six fields/keys and values at the top level:

	deltacode_notice – A string of the terms under which the DeltaCode output is provided.

	deltacode_options – A JSON object containing three key/value pairs:

	--new – A string identifying the path to the JSON file containing the ScanCode output of the codebase the user wants DeltaCode to treat as the ‘new’ codebase.

	--old – A string identifying the path to the JSON file containing the ScanCode output of the codebase the user wants DeltaCode to treat as the ‘old’ codebase.

	--all-delta-types – A true or false value.
- This value will be true if the command-line input includes the -a or --all-delta-types flag, in which case the deltas field described below will include details for unmodified files as well as all changed files.
- If the user does not include the -a or --all-delta-types flag, the value will be false and unmodified files will be omitted from the DeltaCode output.

	deltacode_version – A string representing the version of DeltaCode on which the codebase comparison was run.

	deltacode_errors – A list of one or more strings identifying errors (if any) that occurred during the codebase-comparison process.

	deltas_count – An integer representing the number of ‘Delta’ objects – the file-level comparisons of the two codebases (discussed in the next section) – contained in the DeltaCode output’s deltas key/value pair.

	If the user’s command-line input does not include the -a or --all-delta-types flag (see the discussion above of the --all-delta-types field/key), the DeltaCode output will omit details for unmodified files and consequently the deltas_count field will not include unmodified files.

	deltas – A list of ‘Delta’ objects, each of which represents a file-level comparison (i.e., the “delta”) of the ‘new’ and ‘old’ codebases. The Delta object is discussed in further detail in the next section.

This is the top-level JSON structure of the key/value pairs described above:

{
 "deltacode_notice": "",
 "deltacode_options": {
 "--new": "",
 "--old": "",
 "--all-delta-types": false
 },
 "deltacode_version": "",
 "deltacode_errors": [],
 "deltas_count": 0,
 "deltas": [one or more Delta objects]
}

The Delta Object

Each Delta object consists of four key/value pairs:

	factors: A list of one or more strings representing the factors that characterize the file-level comparison and are used to calculate the resulting score, e.g.

"factors": [
 "added",
 "license info added",
 "copyright info added"
],

The possible values for the factors field are discussed in some detail in DeltaCode Scoring Deltacode Scoring.

	score: An integer representing the magnitude/importance of the file-level change – the higher the score, the greater the change. For further details about the DeltaCode scoring system, see DeltaCode Scoring Deltacode Scoring.

	new: A ‘File’ object containing key/value pairs of certain ScanCode-based file attributes (path, licenses, copyrights etc.) for the file in the codebase designated by the user as new. If the Delta object represents the removal of a file (the factors value would be removed), the value of new will be null.

	old: A ‘File’ object containing key/value pairs of certain ScanCode-based file attributes for the file in the codebase designated by the user as old. If the Delta object represents the addition of a file (the factors value would be added), the value of old will be null.

The JSON structure of a Delta object looks like this::

{
 "factors": [],
 "score": 0,
 "new": {
 "path": "",
 "type": "",
 "name": "",
 "size": 0,
 "sha1": "",
 "original_path": "",
 "licenses": [],
 "copyrights": []
 },
 "old": {
 "path": "",
 "type": "",
 "name": "",
 "size": 0,
 "sha1": "",
 "original_path": "",
 "licenses": [],
 "copyrights": []
 }
}

The File Object

As you saw in the preceding section, the File object has the following JSON structure::

{
 "path": "",
 "type": "",
 "name": "",
 "size": 0,
 "sha1": "",
 "original_path": "",
 "licenses": [],
 "copyrights": []
}

A File object consists of eight key/value pairs:

	path: – A string identifying the path to the file in question.
In processing the ‘new’ and ‘old’ codebases to be compared, DeltaCode may modify the codebases’ respective file paths in order to properly align them for comparison purposes. As a result, a File object’s path value may differ to some extent from its original_path value (see below).

	type: – A string indicating whether the object is a file or a directory.

	name: – A string reflecting the name of the file.

	size: – An integer reflecting the size of the file in KB.

	sha1: – A string reflecting the file’s sha1 value.

	original_path: – A string identifying the file’s path as it exists in the codebase, prior to any processing by DeltaCode to modify the path for purposes of comparing the two codebases.

	licenses: – A list of License objects reflecting all licenses identified by ScanCode as associated with the file. This list can be empty.

	copyrights: – A list of Copyright objects reflecting all copyrights identified by ScanCode as associated with the file. This list can be empty.

Example of Detailed JSON output

Here is an example of the detailed DeltaCode output in JSON format displaying one Delta object in the deltas key/value pair – in this case, an excerpt from the JSON output of a DeltaCode comparison of zlib-1.2.11 and zlib-1.2.9::

{
 "deltacode_notice": "Generated with DeltaCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nDeltaCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nDeltaCode is a free software codebase-comparison tool from nexB Inc. and others.\nVisit https://github.com/nexB/deltacode/ for support and download.",
 "deltacode_options": {
 "--new": "C:/scans/zlib-1.2.11.json",
 "--old": "C:/scans/zlib-1.2.9.json",
 "--all-delta-types": false
 },
 "deltacode_version": "1.0.0.post49.e3ff7be",
 "deltacode_errors": [],
 "deltas_count": 40,
 "deltas": [
 {
 "factors": [
 "modified"
],
 "score": 20,
 "new": {
 "path": "trees.c",
 "type": "file",
 "name": "trees.c",
 "size": 43761,
 "sha1": "ab030a33e399e7284b9ddf9bba64d0dd2730b417",
 "original_path": "zlib-1.2.11/trees.c",
 "licenses": [
 {
 "key": "zlib",
 "score": 60.0,
 "short_name": "ZLIB License",
 "category": "Permissive",
 "owner": "zlib"
 }
],
 "copyrights": [
 {
 "statements": [
 "Copyright (c) 1995-2017 Jean-loup Gailly"
],
 "holders": [
 "Jean-loup Gailly"
]
 }
]
 },
 "old": {
 "path": "trees.c",
 "type": "file",
 "name": "trees.c",
 "size": 43774,
 "sha1": "1a554d4edfaecfd377c71b345adb647d15ff7221",
 "original_path": "zlib-1.2.9/trees.c",
 "licenses": [
 {
 "key": "zlib",
 "score": 60.0,
 "short_name": "ZLIB License",
 "category": "Permissive",
 "owner": "zlib"
 }
],
 "copyrights": [
 {
 "statements": [
 "Copyright (c) 1995-2016 Jean-loup Gailly"
],
 "holders": [
 "Jean-loup Gailly"
]
 }
]
 }
 },
 [additional Delta objects if any]
]
}

CSV

Compared with DeltaCode’s JSON output, the CSV output is relatively simple, comprising the following seven fields as column headers, with each row representing one Delta object:

	Score – An integer representing the magnitude/importance of the file-level change.

	Factors – One or more strings – with no comma or other separators – representing the factors that characterize the file-level comparison and are used to calculate the resulting score.

	Path – A string identifying the file’s path in the ‘new’ codebase unless the Delta object reflects a removed file, in which case the string identifies the file’s path in the ‘old’ codebase. As noted above, this path may vary to some extent from the file’s actual path in its codebase as a result of DeltaCode processing for codebase comparison purposes.

	Name – A string reflecting the file’s name in the ‘new’ codebase unless the Delta object reflects a removed file, in which case the string reflects the file’s name in the ‘old’ codebase.

	Type – A string reflecting the file’s type (‘file’ or ‘directory’) in the ‘new’ codebase unless the Delta object reflects a removed file, in which case the string reflects the file’s type in the ‘old’ codebase.

	Size – An integer reflecting the file’s size in KB in the ‘new’ codebase unless the Delta object reflects a removed file, in which case the string reflects the file’s size in the ‘old’ codebase.

	Old Path – A string reflecting the file’s path in the ‘old’ codebase if the Delta object reflects a moved file. If the Delta object does not involve a moved file, this field is empty. As with the Path field/column header above, this path may differ to some extent from the file’s actual path in its codebase due to DeltaCode processing for codebase comparison purposes.

Deltacode Scoring

Delta Objects

A File-Level Comparison of Two Codebases

A Delta object represents the file-level comparison (i.e., the “delta”) of two codebases, typically two versions of the same codebase, using ScanCode-generated JSON output files as input for the comparison process.

Based on how the user constructs the command-line input, DeltaCode’s naming convention treats one codebase as the “new” codebase and the other as the “old” codebase::

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] [...]

Basic Scoring

A DeltaCode codebase comparison produces a collection of file-level Delta objects. Depending on the nature of the file-level change between the two codebases, each Delta object is characterized as belonging to one of the categories listed below. Each category has an associated score intended to convey its potential importance – from a license/copyright compliance perspective – to a user’s analysis of the changes between the new and old codebases.

In descending order of importance, the categories are:

	added: A file has been added to the new codebase.

	modified: The file is contained in both the new and old codebase and has been modified (as reflected, among other things, by a change in the file’s sha1 attribute).

	moved: The file is contained in both the new and old codebase and has been moved but not modified.

	removed: A file has been removed from the old codebase.

	unmodified: The file is contained in both the new and old codebase and has not been modified or moved.

The score of a Delta object characterized as added or modified may be increased based on the detection of license- and/or copyright-related changes. See License Additions and Changes and Copyright Holder Additions and Changes below.

Delta Object Fields and Values

Each Delta object includes the following fields and values:

	factors: One or more strings representing the factors that characterize the file-level comparison and resulting score, e.g., in JSON format::

"factors": [
 "added",
 "license info added",
 "copyright info added"
],

	score: A number representing the magnitude/importance of the file-level change – the higher the score, the greater the change.

	new: The ScanCode-based file attributes (path, licenses, copyrights etc.) for the file in the codebase designated by the user as new.

	old: The ScanCode-based file attributes for the file in the codebase designated by the user as old.

Note that an added Delta object will have a new file but no old file, while a removed Delta object will have an old file but not a new file. In each case, the new and old keys will be present but the value for the missing file will be null.

License Additions and Changes

Certain file-level changes involving the license-related information in a Delta object will increase the object’s score.

	An added Delta object’s score will be increased:

	If the new file contains one or more licenses (factors will include license info added).

	If the the new file contains any of the following Commercial/Copyleft license categories (factors will include, e.g., copyleft added):

	‘Commercial’

	‘Copyleft’

	‘Copyleft Limited’

	‘Free Restricted’

	‘Patent License’

	‘Proprietary Free’

	A modified Delta object’s score will be increased:

	If the old file has at least one license and the new file has no licenses (factors will include license info removed).

	If the old file has no licenses and the new file has at least one license (factors will include license info added).

	If both the old file and new file have at least one license and the license keys are not identical (e.g., the old file includes an mit license and an apache-2.0 license and the new file includes only an mit license) (factors will include license change).

	If any of the Commercial/Copyleft license categories listed above are found in the new file but not in the old file (factors will include, e.g., proprietary free added).

Copyright Holder Additions and Changes

	An added Delta object’s score will be increased if the new file contains one or more copyright holders (factors will include copyright info added).

	A modified Delta object’s score will be increased:

	If the old file has at least one copyright holder and the new file has no copyright holders (factors will include copyright info removed).

	If the old file has no copyright holders and the new file has at least one (actors will include copyright info added).

	If both the old file and new file have at least one copyright holder and the holders are not identical (factors will include copyright change).

Moved, Removed and Unmodified

As noted above in Basic Scoring Basic Scoring, from a license/copyright compliance perspective, the three least significant Delta categories are moved, removed and unmodified.

In the current version of DeltaCode, each of these three categories is assigned a score of 0, with no options to increase that score depending on the content of the Delta object.

However, it is possible that both moved and removed will be assigned some non-zero score in a future version. In particular, removed could be significant from a compliance viewpoint where, for example, the removal of a file results in the removal of a Commercial/Copyleft license obligation.

Development

See CONTRIBUTING.rst for details:
https://github.com/nexB/deltacode/blob/develop/CONTRIBUTING.rst

Code layout and conventions

Source code is in src/. Tests are in tests/.

Each test script is named test_XXXX and while we love to use py.test as a test runner, most tests have no dependencies on py.test, only on the unittest module (with the exception of some command line tests that depend on pytest monkeypatching capabilities.

When source or tests need data files, we store these in a data subdirectory.

We use PEP8 conventions with a relaxed line length that can be up to 90’ish characters long when needed
to keep the code clear and readable.

We store pre-built bundled native binaries in bin/ sub-directories of each src/ packages. These binaries are organized by OS and architecture. This ensure that DeltaCode works out of the box either using a checkout or a download, without needing a compiler and toolchain to be installed.

We store bundled thirdparty components and libraries in the thirdparty directory. Python libraries are stored as wheels, eventually pre-built if the corresponding wheel is not available in the Pypi repository.
Some of these components may be advanced builds with bug fixes or advanced patches.

We write tests, a lot of tests, thousands of tests. Several tests are data-driven and use data files as test input and sometimes data files as test expectation (in this case using either JSON or YAML files). The tests should pass on Linux 64 bits, Windows 32 and 64 bits and on MacOSX 10.6.8 and up. We maintain two CI loops with Travis (Linux) at https://travis-ci.org/nexB/deltacode and Appveyor (Windows) at https://ci.appveyor.com/project/nexB/deltacode

When finding bugs or adding new features, we add tests. See existing test code for examples.

Running tests

DeltaCode comes with over 130 unit tests to ensure detection accuracy and stability across Linux, Windows and macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the py.test script to run the whole test suite. This is installed by pytest which is bundled with a DeltaCode checkout and installed when you run ./configure).

If you are running from a fresh git clone and you run ./configure and then source bin/activate the py.test command will be available in your path.

Alternatively if you have already configured but are not in an activated “virtualenv” the py.test command is available under <root of your checkout>/bin/py.test

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel (and faster)
For instance: py.test -n4 runs the tests on 4 CPUs.
We typically run the tests in verbose mode with py.test -vvs -n4

See also https://docs.pytest.org for details or use the py.test -h command to show the many other options available.

One useful option is to run a select subset of the test functions matching a pattern with the -k option for instance: py.test -vvs -k tcpdump would only run test functions that contain the string “tcpdump” in their name or their class name or module name .

Another useful option after a test run with some failures is to re-run only the failed tests with the --lf option for instance: py.test -vvs --lf would only run only test functions that failed in the previous run.

pip requirements and the configure script

DeltaCode use the configure and configure.bat (and etc/configure.py behind the scenes) scripts to install a virtualenv [https://virtualenv.pypa.io/en/stable/], install required packaged dependencies as pip [https://github.com/pypa/pip] requirements and more configure tasks such that DeltaCode can be installed in a self-contained way with no network connectivity required.

DeltaCode requirements and third-party Python libraries

In a somewhat unconventional way, all the required libraries are bundled aka. copied in the repo itself in the thirdparty/ directory. If DeltaCode were only a library it would not make sense. But its is first an application and having a well defined frozen set of dependent packages is important for an app.
The benefit of this approach (combined with the configure script) means that a mere checkout of the repository contains everything needed to run DeltaCode except for a Python interpreter.

Using DeltaCode as a Python library

(Coming Soon) DeltaCode can be used alright as a Python library and is available as as a Python wheel in Pypi and installed with pip install deltacode.

JSON to CSV Conversion

The default output format for a DeltaCode codebase comparison is JSON. If the -j or --json-file option is included in the deltacode command, the output will be written to a .json file at the user-designated location. For example:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] -j [path to the JSON output file]

We have also created an easy-to-use script for users who want to convert their JSON output to CSV format. Located at etc/scripts/json2csv.py, the conversion can be run with this command template:

python etc/scripts/json2csv.py [path to the JSON input file] [path to the CSV output file]

Release Process

Steps to cut a new release:

run bumpversion with major, minor or patch to bump the version in:

src/deltacode/__init__.py
setup.py
deltacode.ABOUT

Update the CHANGELOG.rst
commit changes and push changes to develop:

git commit -m "commit message"
git push --set-upstream origin develop

merge develop branch in master and tag the release.

git checkout master
git merge develop
git tag -a v1.6.1 -m "Release v1.6.1"
git push --set-upstream origin master
git push --set-upstream origin v1.6.1

Draft a new release in GitHub, using the previous release blurb as a base. Highlight new and noteworthy changes from the CHANGELOG.rst.

Run etc/release/release.sh locally.

Upload the release archives created in the dist/ directory to the GitHub release page.

Save the release as a draft. Use the previous release notes to create notes in the same style. Ensure that the link to thirdparty source code is present.

Test the downloads.

Publish the release on GitHub

Then build and publish the released wheel on Pypi. For this you need your own Pypi credentials (and get authorized to publish Pypi release: ask @pombredanne) and you need to have the twine package installed and configured.

Build a .whl with python setup.py bdist_wheel
Run twine with twine upload dist/<path to the built wheel>
Once uploaded check the published release at https://pypi.python.org/pypi/deltacode/
Then create a new fresh local virtualenv and test the wheel installation with: pip install deltacode

AboutCode Docs

Welcome to the AboutCode wiki!

If you are interested in the Google Summer of Code 2019, check out this page. Google Summer of Code 2019

If you are interested in the Google Season of Documents 2019, go through this page. Google Season of Docs 2019

	Contributor Project Ideas
	Welcome to AboutCode!

	Table of Contents

	AboutCode projects are…

	Contact

	Technology

	About your project application

	Our Project ideas

	Google Season of Docs 2019
	Table of Contents

	List of AboutCode projects

	Contact

	Technology

	Technical Writing Skills Needed

	About your project application

	Our Documentation Project ideas

	Tutorial ideas

	How-To ideas

	Reference ideas

	Discussion ideas

	Your Documentation Project ideas

	Mentoring

	Google Summer of Code 2017
	Contact

	Technology

	About your project application

	Project ideas

	Google Summer of Code 2018

	Google Summer of Code 2019
	Table of Contents

	AboutCode projects are…

	Contact

	Technology

	Skills

	About your project application

	Our Project ideas

	Mentoring

	Writing good Commit Messages

Contributor Project Ideas

Welcome to AboutCode!

AboutCode is a project to uncover data … about software code:

	where does the code come from? which software package?

	what’s is its license? copyright?

	is the code secure, maintained, well coded?

All these are questions that are important to find answers to: there are million
of free and open source software components available on the web.

Knowing where a software package comes from, if it is vulnerable and what’s its
licensing should be a problem of the past such that everyone can safely consume
more free and open source software.

Join us to make it so!

Our tools are used to help detect and report the origin and license of source
code, packages and binaries as well as discover software and package
dependencies, and track security vulnerabilities, bugs and other important
software package attributes. This is a suite of command line tools, web-based
and API servers and desktop applications.

Table of Contents

	Welcome to AboutCode!

	AboutCode projects are…

	Contact

	Technology

	About your project application

	Our Project ideas

	AboutCode data server

	VulnerableCode Package security vulnerability data feed (and scanner)

	Integrate the license expression library in ScanCode (Python) and AboutCode Manager (JavaScript)

	High volume matching automatons and data structures

	ScanCode scan deduction

	License and copyright detection benchmark

	Improved copyright parsing and speed in ScanCode

	Transparent archive extraction in ScanCode

	Port ScanCode to Python 3

	Automated Docker, containers and VM images static package analysis

	Static analysis of binaries for build tracing in TraceCode

	Create Linux distro packages for ScanCode

	Package URL implementations in many programming languages

	DependentCode: a mostly universal Package dependencies resolver

AboutCode projects are…

	ScanCode Toolkit a popular command line tool to scan code for licenses, copyrights and packages, used by many organizations and FOSS projects, small and large.

	AboutCode Manager a JavaScript, Electron-based desktop application to review scan results and document your conclusions

	AboutCode Toolkit a set of command line tools to document and inventory known
packages and licenses and generate attribution docs

	TraceCode Toolkit: a set of command line tools to find which source code is used to create a compiled binary

	DeltaCode Toolkit: a new command line tool to compare codebases based on scan and determine if and where there are material differences that affect licensing

	VulnerableCode Server: a new server-side application to track package vulnerabilities

	AboutCode Server: a new server-side application to run and organize scans and ABC data (formerly ScanCode server)

	ConAn: a command line tool to analyze the code in Docker and container images

	license-expression: a library to parse and render boolean license expression (such as SPDX)

	Other new tools for source and binary code matching/search and package inventories.

We also work closely with other orgs and projects:

	purl aka. Package URLs https://github.com/package-url which is an emerging standard to reference software packages of all types.

	SPDX.org aka. Software Package Data Exchange, a spec to document the origin and licensing of packages

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
introduce yourself and start the discussion!

For personal issues, you can contact the primary org admin directly:
@pombredanne and pombredanne@gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology

Discovering the origin of code is a vast topic. We primarily use Python for this
and some C/C++ (and eventually Rust) for performance sensitive code and
Electron/JavaScript for GUI. We are open to using any other language within
reason.

Our domain includes text analysis and processing (for instance for copyrights
and licenses), parsing (for package manifest formats), binary analysis (to
detect the origin and license of binaries, which source code they come from,
etc) as well as web based tools and APIs (to expose the tools and libraries as
web services) and low-level data structures for efficient matching (such as Aho-
Corasick and other automata)

About your project application

We expect your application to be in the range of 1000 words. Anything less than
that will probably not contain enough information for us to determine whether
you are the right person for the job. Your proposal should contain at least the
following information, plus anything you think is relevant:

	Your name

	Title of your proposal

	Abstract of your proposal

	Detailed description of your idea including explanation on why is it
innovative and what it will contribute

	hint: explain your data structures and the main processing flows in details.

	Description of previous work, existing solutions (links to prototypes,
bibliography are more than welcome)

	Mention the details of your academic studies, any previous work, internships

	Relevant skills that will help you to achieve the goal (programming languages,
frameworks)?

	Any previous open-source projects (or even previous GSoC) you have contributed
to and links.

	Do you plan to have any other commitments during GSoC that may affect your
work? Any vacations/holidays? Will you be available full time to work on your
project? (Hint: do not bother applying if this is not a serious full time
commitment)

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
introduce yourself and start the discussion!

You need to understand something about open source licensing or package managers
or code and binaries static analysis or low level data structures. The best way
to demonstrate your capability would be to submit a small patch ahead of the
project selection for an existing issue or a new issue.

We will always consider and prefer a project submissions where you have
submitted a patch over any otherr submission without a patch.

Our Project ideas

Here is a list of candidate project ideas for your consideration. Your own ideas
are welcomed too! Please chat about them to increase your chances of success!

Note that there is NO specific order in this list!

AboutCode data server

This project is to futher and evolve the ScanCode server (was started last year
as a 2017 GSoC project) and rename it as the AboutCode server.

The features of this updated server would be:

	Store any ABC data including ScanCode scans See AboutCode Data : ABCD

	Organize the data in projects (including possibly user-private projects)

	Execute selectively AboutCode tools such as ScanCode-toolkit, AboutCode-toolkit, etc.

	Integrate the storage and retrieval of scans and ABC data with the AboutCode
Manager app through the JSON API.

	Add a Github integration to scan/run an ABC tool on commit with webhooks.

	Bonus feature is to scan based on a received tweet of similar IRC or IM integration.

	Tech

	Python 2, Django, PostgreSQL, DRF, JavaScript, Electron

	URLS

	https://github.com/nexB/scancode-server

	https://github.com/nexB/aboutcode-manager

	https://github.com/nexB/aboutcode-toolkit

	https://github.com/nexB/scancode-toolkit

	Mentors

	@majurg https://github.com/majurg

	@tdruez https://github.com/tdruez

VulnerableCode Package security vulnerability data feed (and scanner)

This project is to futher and evolve the VulnerableCode server and and software
package vulnerabilities data aggregator.

VulnerableCode was started last year as a 2017 GSoC project. Its goal is to
collect and aggregate vulnerabilities data and provide semi-automatic
correlation. In the end it should provide the basis to report vulnerabilities
alerts found in packages identified by ScanCode.

This is not trivial as there are several gaps in the CVE data and how they
relate to packages as they are detected by ScanCode or else.

The features and TODO for this updated server would be:

	Aggregate more and new packages vulnerabilities feeds,

	Automating correlation: add smart relationship detection to infer new
relatiosnhips between available packages and vulnerabilities from mining the
graph of existing relations.

	Create a ScanCode plugin to report vulnerabilities with detected packages
using this data.

	Integrate API lookup on the server withe the AboutCode Manager UI

	Create a UI and model for community curation of vulnerability to package
mappings, correlations and enhancements.

	Tech

	Python 2, Django, PostgreSQL, DRF, JavaScript, Electron

	URLS

	https://github.com/nexB/vulnerablecode

	https://github.com/nexB/aboutcode-manager

	https://github.com/nexB/scancode-toolkit

	Other interesting pointers:

	https://github.com/cve-search/cve-search

	https://github.com/jeremylong/DependencyCheck/

	https://github.com/victims/victims-cve-db

	https://github.com/rubysec/ruby-advisory-db

	https://github.com/future-architect/vuls

	https://github.com/coreos/clair

	https://github.com/anchore/anchore/

	https://github.com/pyupio/safety-db

	https://github.com/RetireJS/retire.js

	and many more including Linux distro feeds

	Mentors

	@majurg https://github.com/majurg

	@JonoYang https://github.com/JonoYang

	@pombredanne https://github.com/pombredanne

Integrate the license expression library in ScanCode (Python) and AboutCode Manager (JavaScript)

In GSoC 2017, this Python library was ported to JavaScript using Transcrypt.

The goal of this project is to add support for license expressions in multiple
projects and evolve the license expression library as needed:

	in Python:

	the SPDX Python library

	the ScanCode toolkit. This also include the proper detection of license
expressions in SPDX-License-Identifier tags.

	the AboutCode toolkit

	in JavaScript:

	the AboutCode Manager

	in both languages in the core license expression proper, add support for a
built-in mode for strict SPDX expressions

	Tech

	Python, JavaScript

	URLS

	https://github.com/nexB/license-expression

	https://github.com/bastikr/boolean.py

	https://github.com/nexB/aboutcode-manager

	https://github.com/nexB/aboutcode-toolkit

	https://github.com/nexB/scancode-toolkit

	https://github.com/spdx/tools-python

	Mentors

	@JonoYang https://github.com/JonoYang

	@majurg https://github.com/majurg

High volume matching automatons and data structures

MatchCode will provide ways to efficiently match actual code against a large
stored indexes of open source code.

To enable this, we need to research and create efficient and compact data
structures that are specialized for the type of data we lookup. Given the volume
to consider (typically multi billion values indexed) there are special
considerations to have compact and memory efficient dedicated structures (rather
than using a general purpose DB or Key/value pair store) that includes looking
at automata, and memory mapping. This types of data structures should be
implemented in Rust as a preference (though C/C++ is OK) and include Python
bindings.

There are several areas to research and implement:

	A data structure to match efficiently a batch of fix-width checksums (e.g.
SHA1) against a large index of such checksums, where each checksum points to
one or more files or packages. A possible direction is to use finite state
transducers or specialized B-tree indexes. Since when a codebase is being
matched there can be millions of lokkups to do, the batch matching is
preferred.

	A data structure to match efficiently a batch of fix-width byte strings (e.g.
LSH) against a large index of such LSH within a fixed hamming distance, where
each points to one or more files or packages. A possible direction is to use
finite state transducers (possibly weighted), specialized B-tree indexes or
multiple hash-like on-disk tables.

	A memory-mapped Aho-Corasick automaton to build large batch tree matchers.
Available Aho-Corasick automaton may not have a Python binding or may not allow
memory-mapping (like pyahocorasick we use in ScanCode). The volume of files we
want to handle requires to reuse, extend or create aspecialized tree/paths
matching automatons that can handle eventually billions of nodes and are larger
than the available RAM. A possible direction is to use
finite state transducers (possibly weighted).

	Feature hashing research: we deal with manyt “features” and hashing to limit
the number and size of the each features seems to be a valuable thing. The goal
is to research feature hashing with short hashes (15, 16 and 32 bits) and
evaluate if this leads to acceptable fasle-positive and loss of accuracy in the
context of the data structures mentioned above.

Then using these data structures, the project should create a system for
matching code as a Python-based server exposing a simple API.
This is a green field project.

	Tech

	Rust, Python

	URLS

	https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.

	https://github.com/nexB/scancode-toolkit for commoncode hashes

	Mentors

	@pombredanne https://github.com/pombredanne

ScanCode scan deduction

The goal of this project is to take existing scan and match results and infer
summaries and deduction at a higher level, such as the licensing or origin of a
whole directory tree. This should be implemented as a set of ScanCode plugins

	Tech

	Python

	URLS

	https://github.com/nexB/scancode-toolkit/issues/426

	https://github.com/nexB/scancode-toolkit/issues/377

	Mentors

	@pombredanne https://github.com/pombredanne

	@JonoYang https://github.com/JonoYang

License and copyright detection benchmark

Compare ScanCode runtimes with Fossology, licensee, LicenseFinder, license-
check, ninka, slic, LiD and others. This project is to create a comprehensive
test suite and a benchmark for several FOSS open source license and copyright
detection engines, establish mappings between the different conventions they use
for license identification and evaluate and publish the results of detection
accuracy and precision.

Note that this not only about the speed of scanning: the performance and time
taken is accessory and a nice to have as a result. What matters is benchmarking
the accuracy of the license detection:

	is the right license detected and how correct is this detection?

	when a license is detected is the correct exact text matched and returned?

So what is needed is a (large) test set of files.

Then establishing a ground truth for reference e.g. detecting then reviewing
manually possibly with ScanCode to set up the baseline that will be used to
compare all the scanners.

Then run the other tools and ScaCode to see how well they perform and of course
establish a mapping of license identifiers: each tool may use different license
ids so we need to map these to the ids used in the test baseline (e.g. the
scancode license keys): all this has to be built, possibly reusing some or all
of the scancode tests and lacing in all the tests from the other tools and
adding more as needed.

	Tech

	Python

	Mentors

	@mjherzog https://github.com/mjherzog

	@pombredanne https://github.com/pombredanne

Improved copyright parsing and speed in ScanCode

Copyright detection is the slowest scanner in ScanCode. It is based on NLTK part
of speech tagging and a copyright grammar.

The goal of this project is to refactor Copyright detection for speed and
simplicity possibly implementaing a new parser (PEG?, etc) or reimplementing
core elements in Rust with a Python binding.

This would include also keeping track of line numbers and offsets where copyrights are found.

This would likely require either replacing or enhancing NLTK which is used as a
natural language parser.

	Tech

	Python, Rust

	URLS

	https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode

	Mentor

	@JonoYang https://github.com/JonoYang

Transparent archive extraction in ScanCode

ScanCode archive extraction is currently done with a separate command line
invocation. The goal of this project is to integrate archive extraction
transparently into the ScanCode scan loop. This would be using the new plugins
architecture.

	Tech

	Python

	URLS

	https://github.com/nexB/scancode-toolkit/issues/14

	Mentor

	@pombredanne https://github.com/pombredanne

Port ScanCode to Python 3

ScanCode runs only on Python 2.7 today. The goal of this project is to port
ScanCode to support both Python 2 and Python 3.

	Tech

	Python

	URLS

	https://github.com/nexB/scancode-toolkit/issues/295

	Mentor

	@pombredanne https://github.com/pombredanne

Automated Docker, containers and VM images static package analysis

The goal of this project is to further the Conan container static analysis tool
to effectively support proper inventory of installed packages without running
the containers.

This includes determining which packages are installed in Docker layers for
RPMs, Debian or Alpine Linux. And this woudl eventually require the integration
of ScanCode.

	Tech

	Python, Go?

	URLS

	https://github.com/pombredanne/conan

	https://github.com/nexB/scancode-toolkit

	Mentor

	@pombredanne https://github.com/pombredanne

Static analysis of binaries for build tracing in TraceCode

TraceCode does system call tracing only today.

	The primary goal of this project is to do the same using symbol, debug symbol
or string matching to accomplish something similar using static analysis.

	This project also would cover updating TraceCode to use the Click comamnd line toolkit
(like for ScanCode).

	Finally thsi project should improve the tracing of the lifecycle of file
descriptors in TraceCode build. We need to improve how TraceCode does system
call tracing by improving the way we track open/close file descriptors in the
trace to reconstruct the lifecycle of a traced file.

	Tech

	Python, Linux

	URLS

	https://github.com/nexB/tracecode-toolkit for the existing non-static tool

	https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols parsers/extractors

	Mentor

	@pombredanne https://github.com/pombredanne

Create Linux distro packages for ScanCode

The goal of this project is to ensure that we have proper packages for Linux
distros for ScanCode.

The first step is to debundle pre-built binaries that exist in ScanCode such
that they come either from system-packages or pre-built Python wheels. This
covers libarchive, libmagic and a few other native libraries.

The next step is to ensure that all the dependencies from ScanCode are also available as distro packages.

The last step is to create proper distro packages for RPM, Debian, Nix and GUIX,
Alpine, Arch and Gentoo and also an AppImage.org package as well as a proper
Docker image and eventually submit these package to the distros.

As a bonus, the same could then be done for AboutCode toolkit and TraceCode.

This requires a good understanding of packaging and Python.

	Tech

	Python, Linux

	URLS

	https://github.com/nexB/scancode-toolkit/issues/487

	https://github.com/nexB/scancode-toolkit/issues/469

	Mentor

	@pombredanne https://github.com/pombredanne

Package URL implementations in many programming languages

We have a purl implmentation in Python, Go and possibly Java today.

The goal of this project is to create multiple parsers and builders in several
programming languages:

	JavaScript, Rust, R, Perl, Ruby, C/C++, Racket, etc.

	Tech

	Many!

	URLS

	https://github.com/package-url

	https://fosdem.org/2018/schedule/event/purl/

	Mentors

	@pombredanne https://github.com/pombredanne

DependentCode: a mostly universal Package dependencies resolver

The goal of this project is to create a tool for mostly universal package
dependencies resolution using a SAT solver that should leverage the detected
packages from ScanCode and the Package URLs and could provide a good enough way
to resolve package dependencies for many system and application package formats.
This is a green field project.

	Tech

	Python, C/C++, Rust, SAT

	URLS

	https://github.com/package-url

	https://fosdem.org/2018/schedule/event/purl/

	Mentors

	@pombredanne https://github.com/pombredanne

Google Season of Docs 2019

AboutCode has been accepted as a participant in the Google Season of Documents in 2019 as a mentoring org, and is looking for people with technical writing skills. This page contains information for technical writers and anyone else interested in helping.

AboutCode is a family of FOSS projects to uncover data about software code:

	Where does the code come from? which software package?

	What is its license? copyright?

	Is the code secure, maintained, well coded?

All these questions are important, and are relevant to millions of free and open source software components available on the web for reuse. The answers are critical to ensure that everyone can safely consume free and open source software.

Join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries as well as to discover software and package dependencies, and in the future track security vulnerabilities, bugs and other important software package attributes. This is a suite of command line tools, web-based and API servers and desktop applications.

Table of Contents

	List of AboutCode projects

	Contact

	Technology

	Technical Writing Skills Needed

	About your project application

	Our Documentation Project ideas

	Tutorial ideas

	Scan a Codebase and Analyze the Results

	How-To ideas

	How To Get the License Clarity Score of a Package

	How To Discover Licensing Issues in a Software Project

	Reference ideas

	ScanCode Output Formats

	Discussion ideas

	Integrating ScanCode into a Software Development Lifecycle

	Your Documentation Project ideas

	Mentoring

List of AboutCode projects

Note that the AboutCode focus for GSOD 2019 is on ScanCode Toolkit and ScanCode Workbench, although proposals to improve the documents of other AboutCode projects are welcome.

	ScanCode Toolkit [https://github.com/nexB/scancode-toolkit] is a popular command line tool to scan code for licenses, copyrights and packages, used by many organizations and FOSS projects, small and large.

	Scancode Workbench [https://github.com/nexB/scancode-workbench] (formerly AboutCode Manager) is a JavaScript, Electron-based desktop application to review scan results and document your origin and license conclusions.

	Other AboutCode projects are described at https://www.aboutcode.org and https://github.com/nexB/aboutcode

We also work closely with, contribute to and have co-started several other orgs and projects:

	Package URL [https://github.com/package-url] is an emerging standard to reference software packages of all types with simple, readable and concise URLs.

	SPDX [http://SPDX.org] is the Software Package Data Exchange, a specification to document the origin and licensing of software packages.

	ClearlyDefined is a project to review FOSS software and help FOSS projects to improve their licensing and documentation clarity.

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
Introduce yourself and start the discussion!

For personal issues, you can contact the primary org admin directly:
@pombredanne and pombredanne@gmail.com

or the GSOD coordinator directly at dmclark@nexb.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology

We primarily use Python (and some C/C++) for code analysis. We use Electron/JavaScript for GUI.

Our domain includes text analysis and processing (for instance for copyright and license detection), parsing (for package manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come from, etc.) as well as web based tools and APIs (to expose the tools and libraries as web services) and low-level data structures for efficient matching (such as Aho-Corasick and other automata).

Our documentation is provided in text files that support the help function of our command line tools. We also have begun to provide documentation in the Wiki section of some AboutCode projects.

Technical Writing Skills Needed

Incoming technical writers will need the following skills:

	Ability to install and configure open source code from GitHub.

	Ability to understand and run programs from the command line in a terminal window.

	Familiarity with the four document functions described at https://www.divio.com/blog/documentation/

	Ability to create and edit wiki pages with multiple markdown languages.

	An interest in FOSS licensing and software code and origin analysis.

We are happy to help you get up to speed, and the more you are able to demonstrate ability and skills in advance, the more likely we are to choose your application!

About your project application

Your application should be in the range of 1000 words, and should contain the following information, plus anything else that you think is relevant:

	Your name and contact details

	Title of your proposal

	Abstract of your proposal

	Description of your idea including an explanation of what it will contribute to the project, such as the software development life cycle requirements that you expect to help with the documentation improvements.

	Description of previous work, existing solutions, open-source projects, preferably with links.

	Details of your academic studies and any previous internships.

	Descriptions of your relevant skills.

	Do you plan to have any other commitments during GSOD that may affect your work? Any vacations/holidays? Will you be available full time to work on your project? Please apply only if this is a serious full time commitment during the GSOD time frame.

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
Introduce yourself and start the discussion!

An excellent, competitive way to demonstrate your capability would be to submit a documentation improvement to an AboutCode project, especially to ScanCode Toolkit or ScanCode Workbench.

You can pick any project idea from the list below. You can also submit Your Documentation Project ideas.

Our Documentation Project ideas

Here is a list of candidate project ideas for your consideration, organized by documentation function: Tutorial , How-To , Reference , Discussion.

Note that the AboutCode focus for GSOD 2019 is on ScanCode Toolkit and ScanCode Workbench, although proposals to improve the documents of other AboutCode projects are welcome.

Your Documentation Project ideas are welcome too! Please chat about them to increase your chances of success!

Tutorial ideas

Scan a Codebase and Analyze the Results

Provide specific instructions to guide a new user to:

	Scan a somewhat complex sample codebase using scancode-toolkit.

	Import the results into ScanCode Workbench.

	Analyze the scan results.

	Level

	Intermediate

	Tech

	Command line processing in a Linux-compatible terminal window

	URLS

	https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

	https://github.com/nexB/scancode-toolkit/wiki

	https://github.com/nexB/scancode-workbench/blob/develop/README.md

	https://github.com/nexB/scancode-workbench/wiki

	Mentors

	https://github.com/DennisClark

How-To ideas

How To Get the License Clarity Score of a Package

Explain the recommended scancode-toolkit options to get a license clarity score.

	Level

	Intermediate

	Tech

	Command line processing in a Linux-compatible terminal window

	URLS

	https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

	https://github.com/nexB/scancode-toolkit/wiki

	https://github.com/nexB/scancode-workbench/blob/develop/README.md

	https://github.com/nexB/scancode-workbench/wiki

	Mentors

	https://github.com/DennisClark

How To Discover Licensing Issues in a Software Project

	Explain the recommended scancode-toolkit options to discover licenses.

	Explain how to take advantage of license policy support.

	Level

	Intermediate

	Tech

	Command line processing in a Linux-compatible terminal window

	URLS

	https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

	https://github.com/nexB/scancode-toolkit/wiki

	https://github.com/nexB/scancode-workbench/blob/develop/README.md

	https://github.com/nexB/scancode-workbench/wiki

	Mentors

	https://github.com/DennisClark

Reference ideas

ScanCode Output Formats

Explain the various ScanCode output formats and their business purposes.

	Level

	Intermediate

	Tech

	Command line processing in a Linux-compatible terminal window

	URLS

	https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

	https://github.com/nexB/scancode-toolkit/wiki

	https://github.com/nexB/scancode-workbench/blob/develop/README.md

	https://github.com/nexB/scancode-workbench/wiki

	Mentors

	https://github.com/DennisClark

Discussion ideas

Integrating ScanCode into a Software Development Lifecycle

Discuss options and techniques to integrate ScanCode into a software development lifecycle workflow:

	During software creation and maintenance.

	During software check-out/check-in.

	During sofware build and test.

	Level

	Intermediate

	Tech

	Command line processing in a Linux-compatible terminal window

	URLS

	https://github.com/nexB/scancode-toolkit/blob/develop/README.rst

	https://github.com/nexB/scancode-toolkit/wiki

	https://github.com/nexB/scancode-workbench/blob/develop/README.md

	https://github.com/nexB/scancode-workbench/wiki

	Mentors

	https://github.com/DennisClark

Your Documentation Project ideas

Download and install ScanCode Toolkit and ScanCode Workbench and try them out. For example, you may try scanning an open source software package in a technology with which you are familiar. What are the documentation weak points?

	Is it difficult to get started? A Tutorial document opportunity.

	Is it difficult to accomplish a specific objective? A How-To document opportunity.

	Are the capabilities of the tool too mysterious? Do you want to know more about what you can do with it? A Reference document opportunity.

	Do you feel that you need to understand its concepts better in order to use it and trust it? Do you want to know more about how the code scanning actually works? A Discussion document opportunity.

Feel free to propose and describe your own documentation ideas.

Mentoring

We welcome new mentors to help with the program. We require some understanding of the project domain to join as a mentor. Contact the team on Gitter at https://gitter.im/aboutcode-org/discuss

Google Summer of Code 2017

[image: AboutCode Logo]
 [http://www.aboutcode.org/]Welcome to AboutCode!
This year AboutCode is a mentoring Organization for the Google Summer of Code 2017 edition.

AboutCode [http://AboutCode.org] is a project to uncover data … about software code:

	where does it come from?

	what is its license? copyright?

	is it secure, maintained, well coded?

All these are questions that are important to find answers to when there are million of free and open source software components available on the web.

Where software comes from and what is its license should be a problem of the past, such that everyone can safely consume more free and open source software. Come and join us to make it so!

Our tools are used to help detect and report the origin and license of source code, packages and binaries, as well as discover software and package dependencies, track vulnerabilities, bugs and other important software component attributes.

Contact

Subscribe to the mailing list at https://lists.sourceforge.net/lists/listinfo/aboutcode-discuss and introduce yourself and start the discussion! The mailing list is usually the better option to avoid timezone gaps.

The list archive have also plenty of interesting information. Someone may have asked your question before.
Search and browse the archives at https://sourceforge.net/p/aboutcode/mailman/aboutcode-discuss/ !

For short chats, you can also join the #aboutcode IRC channel on Freenode or the Gitter channel at https://gitter.im/aboutcode-org/discuss

For personal issues, you can contact the org admin directly: @pombredanne and pombredanne@gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology

Discovering the origin of code is a vast topic. We primarily use Python for this and some C/C++ and JavaScript, but we are open to using any other language within reason.

Our domain includes text analysis and processing (for instance for copyrights and licenses), parsing (for package manifest formats), binary analysis (to detect the origin and license of binaries, which source code they come from, etc) as well as web based tools and APIs (to expose the tools and libraries as web services).

About your project application

We expect your application to be in the range of 1000 words. Anything less than that will probably not contain enough information for us to determine whether you are the right person for the job. Your proposal should contain at least the following information, plus anything you think is relevant:

	Your name

	Title of your proposal

	Abstract of your proposal

	Detailed description of your idea including explanation on why is it innovative and what it will contribute

	hint: explain your data structures and the main processing flows in details.

	Description of previous work, existing solutions (links to prototypes, bibliography are more than welcome)

	Mention the details of your academic studies, any previous work, internships

	Relevant skills that will help you to achieve the goal (programming languages, frameworks)?

	Any previous open-source projects (or even previous GSoC) you have contributed to and links.

	Do you plan to have any other commitments during GSoC that may affect your work? Any vacations/holidays? Will you be available full time to work on your project? (Hint: do not bother applying if this is not a serious full time commitment)

Subscribe to the mailing list at https://lists.sourceforge.net/lists/listinfo/aboutcode-discuss or join the #aboutcode IRC channel on Freenode and introduce yourself and start the discussion!

You need to understand something about open source licensing or package managers or code and binaries static analysis. The best way to demonstrate your capability would be to submit a small patch ahead of the project selection for an existing issue or a new issue.

Project ideas

ScanCode live scan server :

This project is to use ScanCode as a library in a web and REST API application that allows you to scan code on demand by entering a URL and then store the scan results. It could also be made available as a Travis or Github integration to scan on commit with webhooks. Bonus feature is to scan based on a received tweet of similar IRC or IM integration.

	URLS :

	https://github.com/nexB/scancode-toolkit

	Mentors :

	@majurg https://github.com/majurg

	@tdruez https://github.com/tdruez

Package security vulnerability data feed (and scanner) :

The end goal for this project is to build on existing projects to match packages identified by ScanCode to existing vulnerability alerts. This is not trivial as there are several gaps in the CVE data and how they relate to packages as they are detected by ScanCode or else. This is a green field project.

The key points to tackle are:

	create the tools to build a free and open source structured and curate security feed

	the aggregation of packages vulnerabilities feeds in a common and structured model (CVE, distro trackers, etc),

	the aggregation of additional security data (CWE, CPE, and more) in that model,

	the correlation of the different data items, creating accurate relationships and matching of actual package identifiers to vulnerabilities,

	an architecture for community curation of vulnerabilities, correlation and enhancement of the data.

	as a side bonus, build the tools in ScanCode to match detected packages to this feed.
Note there is no FOSS tool and DB that does all of this today (only proprietary solutions such as vfeed or vulndb).

	Some Related URLS for other projects in the same realm :

	https://github.com/cve-search/cve-search

	https://github.com/jeremylong/DependencyCheck/

	https://github.com/victims/victims-cve-db

	https://github.com/rubysec/ruby-advisory-db

	https://github.com/future-architect/vuls

	https://github.com/coreos/clair

	https://github.com/anchore/anchore/

	https://github.com/pyupio/safety-db

	https://github.com/RetireJS/retire.js

	and many more including Linux distro feeds

	Mentors :

	@majurg https://github.com/majurg

	@JonoYang https://github.com/JonoYang

	@pombredanne https://github.com/pombredanne

Port the Python license expression library to JavaScript and prepare and publish an NPM package :

Use automated code translation (for JS) for the port. Add license expression support to AboutCodeMgr with this library. As a bonus, create a web server app and API service to parse and normalize ScanCode and SPDX license expressions either in Python or JavaScript.

	URLS :

	https://github.com/nexB/license-expression

	https://github.com/bastikr/boolean.py

	https://github.com/nexB/aboutcode-manager

	https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

	Mentors :

	@JonoYang https://github.com/JonoYang

	@majurg https://github.com/majurg

MatchCode :

Create a system for matching code using checksums and fingerprints
against a repository of checksums and fingerprints. Create a basic
repository for storing these fingerprints and expose a basic API. Create
a client that can collect fingerprints on code and get matches using API
calls to this repository or package manager APIs (Maven, Pypi, etc), or
search engines APIs such as searchcode.com, debsources, or Github or
Bitbucket commit hash searches/API or the SoftwareHeritage.org API.

	URLS :

	https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.

	https://github.com/nexB/scancode-toolkit for commoncode hashes

	Mentors :

	@pombredanne https://github.com/pombredanne

ScanCode scan deduction :

The goal of this project is to take existing scan and match results and infer summaries and deduction at a higher level, such as the licensing of a whole directory tree.

	URLS :

	https://github.com/nexB/scancode-toolkit/issues/426

	https://github.com/nexB/scancode-toolkit/issues/377

	Mentors :

	@pombredanne https://github.com/pombredanne

	@JonoYang https://github.com/JonoYang

DeltaCode :

A new tool to help determine at a high level if the licensing for two codebases or versions of code has changed, and if so how. This is NOT a generic diff tool that identifies all codebase differences, rather it focuses on changes in licensing based on differences between ScanCode files.

	Mentor :

	@majurg https://github.com/majurg

License and copyright detection benchmark :

Compare ScanCode runtimes with Fossology, licensee, LicenseFinder, license-check, ninka, slic, LiD and others. This project is to create a comprehensive test suite and a benchmark for several FOSS open source license and copyright detection engines, establish mappings between the different conventions they use for license identification and evaluate and publish the results of detection accuracy and precision.

Note that this not about the speed of scanning: the performance and time taken is accessory and a nice to have result only. What matters is the accuracy of the license detection:

	is the right license detected and how correct is this detection?

	when a license is detected is the correct exact text matched and returned?

So what is needed is a (large) test set of files.

Then establishing a ground truth for reference e.g. detecting then reviewing manually possibly with scancode to set up the baseline that will be used to compare all the scanners.

Then run the other tools and scancode to see how well they perform and of course establish a mapping of license identifiers: each tool may use different license ids so we need to map these to the ids used in the test baseline (e.g. the scancode license keys): all this has to be built, possibly reusing some or all of the scancode tests and lacing in all the tests from the other tools and adding more ass needed.

	Mentors :

	@mjherzog https://github.com/mjherzog

	@pombredanne https://github.com/pombredanne

Improved copyright parsing in ScanCode :

by keeping track of line numbers and offsets where copyrights are found. This would likely require either replacing or enhancing NLTK which is used as a natural language parser to add support for tracking where a copyright has been detected in a scanned text.

	URLS :

	https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode

	Mentor :

	@JonoYang https://github.com/JonoYang

Support full JSON and ABCD formats in AttributeCode

	URLS :

	https://github.com/nexB/attributecode/issues/277

	Mentor :

	@chinyeungli https://github.com/chinyeungli

Transparent archive extraction in ScanCode :

ScanCode archive extraction is currently done with a separate command line invocation. The goal of this project is to integrate archive extraction transparently into the ScanCode scan loop.

	URLS :

	https://github.com/nexB/scancode-toolkit/issues/14

	Mentor :

	@pombredanne https://github.com/pombredanne

Automated docker and VM images static package analysis :

to determine which packages are installed in Docker layers for RPMs, Debian or Alpine Linux. This is for the conan Docker image analysis tool.

	URLS :

	https://github.com/pombredanne/conan

	Mentor :

	@pombredanne https://github.com/pombredanne

Plugin architecture for ScanCode :

Create ScanCode plugins for outputs to multiple formats (CSV, JSON, SPDX, Debian Copyright)

	URLS :

	https://github.com/nexB/scancode-toolkit/issues/552

	https://github.com/nexB/scancode-toolkit/issues/381

	Mentor :

	@pombredanne https://github.com/pombredanne

Static analysis of binaries for build tracing in TraceCode :

TraceCode does system call tracing. The goal of this project is to do the same using symbol, debug symbol or string matching to accomplish something similar,

	URLS :

	https://github.com/nexB/tracecode-build for the existing non-static tool

	https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols parsers/extractors

	Mentor :

	@pombredanne https://github.com/pombredanne

Better support tracing the lifecycle of file descriptors in TraceCode build :

TraceCode does system call tracing. The goal of this project is to improve the way we track open/close file descriptors in the trace to reconstruct the life of a file.

	URLS :

	https://github.com/nexB/tracecode-build

	Mentor :

	@pombredanne https://github.com/pombredanne

Create Debian and RPM packages for ScanCode, AttributeCode and TraceCode.

Consider also including an AppImage.org package. If you think this may not fill in a full three months project, consider also adding some extras such as submitting the packages to Debian and Fedora.

	URLS :

	https://github.com/nexB/scancode-toolkit/issues/487

	https://github.com/nexB/scancode-toolkit/issues/469

	Mentor :

	@pombredanne https://github.com/pombredanne

AboutCode Manager test suite and Ci :

Create an extensive test suite for the Electron app and setup the CI to run unit, integration and smoke tests on Ci for Windows, Linux and Mac.

	URLS :

	https://github.com/nexB/aboutcode-manager

	Mentors :

	@jdaguil https://github.com/jdaguil

	@pombredanne https://github.com/pombredanne

DependentCode :

Create a tool for mostly universal package dependencies resolution.

	URLS :

	https://github.com/nexB/dependentcode

	Mentors :

	@pombredanne https://github.com/pombredanne

FetchCode :

Create a tool for mostly universal package and code download from VCS, web, ftp, etc.

	Mentors :

	@pombredanne https://github.com/pombredanne

Google Summer of Code 2018

See Contributor Project Ideas.

Google Summer of Code 2019

AboutCode is participating in the Google Summer of Code in 2019 as a mentoring org. This page contain all the information for students and anyone else interested in helping.

AboutCode is a family of FOSS projects to uncover data … about software code:

	where does the code come from? which software package?

	what is its license? copyright?

	is the code secure, maintained, well coded?

All these are questions that are important to answer: there are million
of free and open source software components available on the web for reuse.

Knowing where a software package comes from, what is its license and if it is
vulnerable and what’s its licensing should be a problem of the past such that
everyone can safely consume more free and open source software.

Join us to make it so!

Our tools are used to help detect and report the origin and license of source
code, packages and binaries as well as discover software and package
dependencies, and in the future track security vulnerabilities, bugs and other
important software package attributes. This is a suite of command line tools,
web-based and API servers and desktop applications.

Table of Contents

	AboutCode projects are…

	Contact

	Technology

	Skills

	About your project application

	Our Project ideas

	Improve Copyright detection accuracy and speed in ScanCode

	Port ScanCode to Python 3

	Improve Programming language detection and classification in ScanCode

	Improve License detection accuracy and speed in ScanCode

	Improve ScanCode scan summarization and deduction

	Create Linux distros and FreeBSD packages for ScanCode.

	DeltaCode projects

	TraceCode projects

	Conan and Other projects

	Mentoring

AboutCode projects are…

	ScanCode Toolkit [https://github.com/nexB/scancode-toolkit] is a popular
command line tool to scan code for licenses, copyrights and packages, used by
many organizations and FOSS projects, small and large.

	Scancode Workbench [https://github.com/nexB/scancode-workbench]
(formerly AboutCode Manager) is a JavaScript, Electron-based desktop
application to review scan results and document your origin and license
conclusions.

	AboutCode Toolkit [https://github.com/nexB/aboutcode-toolkit] is a
command line tool to document and inventory known packages and licenses
and generate attribution docs, typically using the results of analyzed
and reviewed scans.

	TraceCode Toolkit [https://github.com/nexB/tracecode-toolkit] is
a command line tool to find which source code file is used to create a
compiled binary and trace and graph builds.

	DeltaCode [https://github.com/nexB/deltacode] is a command line
tool to compare scans and determine if and where there are material
differences that affect licensing.

	ConAn [https://github.com/nexB/conan] : a command line tool to analyze
the code in Docker and container images

	VulnerableCode [https://github.com/nexB/vulnerablecode] : an emerging
server-side application to collect and track known package vulnerabilities.

	license-expression [https://github.com/nexB/license-expression/] : a library
to parse, analyze, simplify and render boolean license expression (such as SPDX)

We also work closely, contribute and co-started several other orgs and projects:

	Package URL [https://github.com/package-url] which is an emerging
standard to reference software packages of all types with simple, readable and
concise URLs.

	SPDX [http://SPDX.org] aka. Software Package Data Exchange, a spec to
document the origin and licensing of packages.

	ClearlyDefined to review and help FOSS projects
improve their licensing and documentation clarity.

Contact

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
Introduce yourself and start the discussion!

For personal issues, you can contact the primary org admin directly:
@pombredanne and pombredanne@gmail.com

Please ask questions the smart way: http://www.catb.org/~esr/faqs/smart-questions.html

Technology

Discovering the origin of code is a vast topic. We primarily use Python for this
and some C/C++ (and eventually some Rust and Go) for performance sensitive code and
Electron/JavaScript for GUI.

Our domain includes text analysis and processing (for instance for copyrights
and licenses detection), parsing (for package manifest formats), binary analysis
(to detect the origin and license of binaries, which source code they come from,
etc.) as well as web based tools and APIs (to expose the tools and libraries as
web services) and low-level data structures for efficient matching (such as Aho-
Corasick and other automata).

Skills

Incoming students will need the following skills:

	Intermediate to strong Python programming. For some projects, strong C/C++ and/or Rust is needed too.

	Familiarity with git as a version control system

	Ability to set up your own development environment

	An interest in FOSS licensing and software code and origin analysis

We are happy to help you get up to speed, but the more you are able to demonstrate ability and skills in advance, the more likely we are to choose your application!

About your project application

We expect your application to be in the range of 1000 words. Anything less than
that will probably not contain enough information for us to determine whether
you are the right person for the job. Your proposal should contain at least the
following information, plus anything you think is relevant:

	Your name

	Title of your proposal

	Abstract of your proposal

	Detailed description of your idea including explanation on why is it
innovative and what it will contribute to the project

	hint: explain your data structures and you planned main processing flows in
details.

	Description of previous work, existing solutions (links to prototypes,
bibliography are more than welcome)

	Mention the details of your academic studies, any previous work, internships

	Relevant skills that will help you to achieve the goal (programming languages,
frameworks)?

	Any previous open-source projects (or even previous GSoC) you have contributed
to and links.

	Do you plan to have any other commitments during GSoC that may affect your
work? Any vacations/holidays? Will you be available full time to work on your
project? (Hint: do not bother applying if this is not a serious full time
commitment during the GSoC time frame)

Join the chat online or by IRC at https://gitter.im/aboutcode-org/discuss
introduce yourself and start the discussion!

The best way to demonstrate your capability would be to submit a small patch
ahead of the project selection for an existing issue or a new issue.

We will always consider and prefer a project submissions where you have
submitted a patch over any other submission without a patch.

You can pick any project idea from the list below. If you have other ideas that
are not in this list, contact the team first to make sure it makes sense.

Our Project ideas

Here is a list of candidate project ideas for your consideration. Your own ideas
are welcomed too! Please chat about them to increase your chances of success!

ScanCode ideas

Improve Copyright detection accuracy and speed in ScanCode

Copyright detection is reasonably good by the slowest scanner in ScanCode.
It is based on NLTK part of speech (PoS) tagging and a copyright grammar.
The exact start and end lines where a copyright is found are approximate.

The goal of this project is to refactor Copyright detection for speed and
simplicity possibly implementing a new parser (PEG?, etc.) or re-implementing
core elements in Rust with a Python binding for speed or using a fork of NLTK
or any other tool to be faster and more accurate.

This would include also keeping track of line numbers and offsets where
copyrights are found.

Also we detect copyrights that are part of a standard license text (e.g. FSF
copyright in a GPL text) and we should be able to filter these out.

	Level

	Advanced

	Tech

	Python, Rust, Go?

	URLS

	https://github.com/nexB/scancode-toolkit/tree/develop/src/cluecode

	Mentors

	@JonoYang https://github.com/JonoYang

Port ScanCode to Python 3

ScanCode runs only on Python 2.7 today. The goal of this project is to port
ScanCode to support both Python 2 and Python 3.

	Level

	Intermediate to Advanced

	Tech

	Python, C/C++, Go (for native code)

	URLS

	https://github.com/nexB/scancode-toolkit/issues/295

	Mentors

	@majurg https://github.com/majurg

Improve Programming language detection and classification in ScanCode

ScanCode programming language detection is not as accurate as it could be and
this is important to get this right to drive further automation. We also need to
automatically classify each file in facets when possible.

The goal of this project is to improve the quality of programming language
detection (which is using only Pygments today and could use another tool, e.g.
some Bayesian classifier like Github linguist, enry ?). And to create and
implement a flexible framework of rules to automate assigning files to facets
which could use some machine learning and classifier.

	Level

	Intermediate to Advanced

	Tech

	Python

	URLS

	https://github.com/nexB/scancode-toolkit/issues/426

	https://github.com/nexB/scancode-toolkit/issues/1012

	https://github.com/nexB/scancode-toolkit/issues/1036

	Mentors

	@pombredanne https://github.com/pombredanne

Improve License detection accuracy and speed in ScanCode

ScanCode license detection is using a sophisticated set of techniques
base on automatons, inverted indexes and sequence matching. There are some cases
where license detection accuracy could be improved (such as when scanning long
notices). Other improvements would be welcomed to ensure the proper detected
license text is collected in an improved way. Dealing with large files sometimes
trigger a timeout and handling these cases would be needed too (by breaking files
in chunks). The detection speed could also be improved possibly by porting
some critical code sections to C or Rust and that would need extensive profiling.

	Level

	Advanced

	Tech

	Python, C/C++, Rust, Go

	Mentors

	@mjherzog https://github.com/mjherzog

	@pombredanne https://github.com/pombredanne

Improve ScanCode scan summarization and deduction

The goal of this project is to take existing scan results and infer
summaries and perform some deduction of license and origin at a higher level,
such as the licensing or origin of a whole directory tree. The ultimate goal is
to automate the conclusion of a license and origin based on scans.
This could include using statistics and machine learning techniques such as
classifiers where relevant and efficient.

This should be implemented as a set of ScanCode plugins and further the
summarycode module plugins.

	Level

	Advanced

	Tech

	Python (Rust and Go welcomed too)

	URLS

	https://github.com/nexB/scancode-toolkit/issues/426

	https://github.com/nexB/scancode-toolkit/issues/377

	Mentors

	@pombredanne https://github.com/pombredanne

	@JonoYang https://github.com/JonoYang

Create Linux distros and FreeBSD packages for ScanCode.

The goal of this project is to ensure that we have proper packages for Linux
distros and FreeBSD for ScanCode.

The first step is to debundle pre-built binaries that exist in ScanCode such
that they come either from system-packages or pre-built Python wheels. This
covers libarchive, libmagic and a few other native libraries and has been
recently completed.

The next step is to ensure that all the dependencies from ScanCode are also
available as distro packages.

The last step is to create proper distro packages for RPM, Debian, FreeBSD and
as many other distros such as Nix and GUIX, Alpine, Arch and Gentoo (and possibly
also AppImage.org packages and Docker images) and submit these package to the distros.

As a bonus, the same could then be done for AboutCode toolkit and TraceCode.

This requires a good understanding of packaging and Python.

	Level

	Intermediate to Advanced

	Tech

	Python, Linux, C/C++ for native code

	URLS

	https://github.com/nexB/scancode-toolkit/issues/487

	https://github.com/nexB/scancode-toolkit/issues/469

	Mentor

	@pombredanne https://github.com/pombredanne

DeltaCode projects

Approximately Similar file detection in DeltaCode

DeltaCode is a tool to compare and report scan differences.
When comparing files, it only uses exact comparison.
The goal of this project is to improve the usefulness of the delta by also
finding files that are mostly the same (e.g. quasi or nrea duplicates) vs. files
that are completely different. Then the DeltaCode comparison core should be
updated accordingly to detect and report material changes to scans (such as
new, update or removed licenses, origins and packages) when changes are also
meterial in the code files (e.g. such that small changes may be ignored)

	Level

	Intermediate to Advanced

	Tech

	Python

	URLS

	https://github.com/nexB/deltacode/

	Mentors

	@majurg https://github.com/majurg

	@johnmhoran https://github.com/johnmhoran

TraceCode projects

Static analysis of binaries for build tracing in TraceCode

TraceCode does system call tracing only today. The primary goal of this project
is to create a tool that provides the same results as the strace-based tracing
but would be using using ELF symbols, DWARF debug symbols, signatures or string
matching to determine when and how a source code file is built in a binary
using only a static analysis. The primary target should be Linux executables,
though the code should be designed to be extensible to Windows PE and macOS Dylib and exes.

	Level

	Advanced

	Tech

	Python, Linux, ELFs, DWARFs, symbols, reversing

	URLS

	https://github.com/nexB/tracecode-toolkit for the existing non-static tool

	https://github.com/nexB/scancode-toolkit-contrib for some work in progress on binaries/symbols parsers/extractors

	Mentor

	@pombredanne https://github.com/pombredanne

Improve dynamic build tracing in TraceCode

TraceCode does system call tracing and relies on kernel-space system calls and
in particular tracing file descriptors. This project should improve the tracing
of the lifecycle of file descriptors when tracing a build with strace. We need
to improve how TraceCode does system call tracing by improving the way we track
open/close file descriptors in the trace to reconstruct the lifecycle of a traced
file. This requires to understand and dive if the essence of system calls and
file lifecycle from a kernel point of view and build datastructure and code
to reconstruct user-space file activity from the kernel traces along a timeline.

This project also would cover updating TraceCode to use the Click command
line toolkit (like for ScanCode).

	Level

	Advanced

	Tech

	Python, Linux kernel, system calls

	URLS

	https://github.com/nexB/tracecode-toolkit for the existing non-static tool

	https://github.com/nexB/scancode-toolkit-contrib for the work in progress on binaries/symbols parsers/extractors

	Mentor

	@pombredanne https://github.com/pombredanne

Conan and Other projects

Containers and VM images static package analysis

The goal of this project is to further the Conan container static analysis tool
to effectively support proper inventory of installed packages without running
the containers.

This includes determining which packages are installed in Docker layers for
RPMs, Debian or Alpine Linux in a static way. And this may eventually require
the integration with ScanCode.

	Level

	Advanced

	Tech

	Python, Go, containers, distro package managers, RPM, Debian, Alpine

	URLS

	https://github.com/nexB/conan

	Mentor

	@JonoYang https://github.com/JonoYang

DependentCode: a mostly universal Package dependencies resolver

The goal of this project is to create a tool for a universal package
dependencies resolution using a SAT solver that should leverage the detected
packages from ScanCode and the Package URLs and could provide a good enough way
to resolve package dependencies for many system and application package formats.
This is a green field project.

	Level

	Advanced

	Tech

	Python, C/C++, Rust, SAT

	URLS

	https://github.com/package-url

	https://fosdem.org/2018/schedule/event/purl/

	https://github.com/heremaps/oss-review-toolkit

	Mentors

	@pombredanne https://github.com/pombredanne

VulnerableCode Package security vulnerability correlated data feed

This project is to futher and evolve the VulnerableCode server and software
package vulnerabilities data aggregator.

VulnerableCode was started as a GSoC project in 2017. Its goal is to
collect, aggregate and correlate vulnerabilities data and provide semi-automatic
correlation. In the end it should provide the basis to report vulnerabilities
alerts found in packages identified by ScanCode.

This is not trivial as there are several gaps in the CVE data and how they
relate to packages as they are detected by ScanCode or else.

The features and TODO for this updated server would be:

	Aggregate more and new packages vulnerabilities feeds,

	Automating correlation: add smart relationship detection to infer new
relatiosnhips between available packages and vulnerabilities from mining the
graph of existing relations.

	Create a ScanCode plugin to report vulnerabilities with detected packages
using this data.

	Integrate API lookup on the server withe the AboutCode Manager UI

	Create a UI and model for community curation of vulnerability to package
mappings, correlations and enhancements.

	Level

	Advanced

	Tech

	Python, Django

	URLS

	https://github.com/nexB/vulnerablecode

	https://github.com/nexB/aboutcode-manager

	https://github.com/nexB/scancode-toolkit

	Other interesting pointers:

	https://github.com/cve-search/cve-search

	https://github.com/jeremylong/DependencyCheck/

	https://github.com/victims/victims-cve-db

	https://github.com/rubysec/ruby-advisory-db

	https://github.com/future-architect/vuls

	https://github.com/coreos/clair

	https://github.com/anchore/anchore/

	https://github.com/pyupio/safety-db

	https://github.com/RetireJS/retire.js

	and many more including Linux distro feeds

	Mentors

	@majurg https://github.com/majurg

	@JonoYang https://github.com/JonoYang

High volume matching automatons and data structures

Finding similar code is a way to detect the origin of code against an index of
open source code.

To enable this, we need to research and create efficient and compact data
structures that are specialized for the type of data we lookup. Given the volume
to consider (typically multi billion values indexed) there are special
considerations to have compact and memory efficient dedicated structures (rather
than using a general purpose DB or Key/value pair store) that includes looking
at automata, and memory mapping. This types of data structures should be
implemented in Rust as a preference (though C/C++ is OK) and include Python
bindings.

There are several areas to research and prototype such as:

	A data structure to match efficiently a batch of fix-width checksums (e.g.
SHA1) against a large index of such checksums, where each checksum points to
one or more files or packages. A possible direction is to use finite state
transducers, specialized B-tree indexes, blomm-like filters. Since when a
codebase is being matched there can be millions of lookups to do, the batch
matching is preferred.

	A data structure to match efficiently a batch of fix-width byte strings (e.g.
LSH) against a large index of such LSH within a fixed hamming distance, where
each points to one or more files or packages. A possible direction is to use
finite state transducers (possibly weighted), specialized B-tree indexes or
multiple hash-like on-disk tables.

	A memory-mapped Aho-Corasick automaton to build large batch tree matchers.
Available Aho-Corasick automatons may not have a Python binding or may not allow
memory-mapping (like pyahocorasick we use in ScanCode). The volume of files we
want to handle requires to reuse, extend or create specialized tree/paths
matching automatons that can handle eventually billions of nodes and are larger
than the available memory. A possible direction is to use finite state
transducers (possibly weighted).

	Feature hashing research: we deal with many “features” and hashing to limit
the number and size of the each features seems to be a valuable thing. The goal
is to research the validaty of feature hashing with short hashes (15, 16 and
32 bits) and evaluate if this leads to acceptable false-positive and loss of
accuracy in the context of the data structures mentioned above.

Then using these data structures, the project should create a system for
matching code as a Python-based server exposing a simple API.
This is a green field project.

	Level

	Advanced

	Tech

	Rust, Python

	URLS

	https://github.com/nexB/scancode-toolkit-contrib for samecode fingerprints drafts.

	https://github.com/nexB/scancode-toolkit for commoncode hashes

	Mentors

	@pombredanne https://github.com/pombredanne

Mentoring

We welcome new mentors to help with the program and require some good unerstanding of the project codebase and domain to join as a mentor. Contact the team on Gitter.

Writing good Commit Messages

What is good commit message? We want to avoid this: https://xkcd.com/1296/

Read these articles:

	by @cbeams How to Write a Git Commit Message [https://chris.beams.io/posts/git-commit/]

	this README from Linus Torvalds https://github.com/torvalds/subsurface-for-dirk/blob/0f58510ce0244513521296b75281fcc32f72a931/README#L73

	from the Git book: https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

The main style points are these:

Subject:

	Add a issue number at the end of the line when available as in “#234”

	Limit the subject line to 50 characters

	Capitalize the subject line

	Do not end the subject line with a period

	Use the imperative mood in the subject line: you are giving orders to the codebase

Body:

	Separate subject from body with a blank line

	Wrap the body at 72 characters. Use only spaces for formatting, not tabs.

	Use the body to explain what and why vs. how

	use bullets with a * if needed

	Add a Reported-by: if needed

	End your message with a Signed-off-by: prefixed by a blank line

Other comments:

We like to suffix the subject line with an issue number. If this was a trivial change it may not have one though. If it had one a you would use #156 as a suffix to the first line.

We like to tell why the commit is there and use an imperative style, like if you were giving an order to the codebase with your commit:

e.g rather than : Minor fix for unnecessary operations.
may be Remove unnecessary operations #123
or

Remove unnecessary operations #123

 * If the ts timestamp does not exist, do not compare with old one.

You need to add a signoff to your commit. So the final message would have looked like this:

Remove unnecessary operations #123

 * If the ts timestamp does not exist, do not compare with old one.

Signed-off-by: Philippe Ombredanne <pombredanne@nexb.com>

AboutCode-Toolkit Documentation

	AboutCode Toolkit
	Build and tests status

	REQUIREMENTS

	INSTALLATION

	REFERENCE

	TESTS and DEVELOPMENT

	HELP and SUPPORT

	SOURCE CODE

	HACKING

	LICENSE

	Reference
	about

	attrib

	check

	gen

	inventory

	Special Notes

	ABOUT File Specification v3.1.2
	Purpose

	Specification

	ABOUT file name

	Lines of text

	Field name

	Field value

	Fields are mandatory or optional

	Extension and ignored fields

	Fields validation

	Fields order and multiple occurrences

	Field referencing a file

	Field referencing a URL

	Flag fields

	Referencing the file or directory documented by an ABOUT file

	Other Mandatory fields

	Optional Information fields

	Optional Owner and Author fields

	Optional Licensing fields

	Optional Boolean flag fields

	Optional Extension fields

	Optional Extension fields to reference files stored in a version control system (VCS)

	Optional Extension fields for checksums

AboutCode Toolkit

Build and tests status

	Branch

	Linux/macOS

	Windows

	Master

	[image: Linux Master branch tests status] [https://travis-ci.org/nexB/aboutcode-toolkit]

	[image: Windows Master branch tests status] [https://ci.appveyor.com/project/nexB/aboutcode-toolkit]

	Develop

	[image: Linux Develop branch tests status] [https://travis-ci.org/nexB/aboutcode-toolkit]

	[image: Windows Develop branch tests status] [https://ci.appveyor.com/project/nexB/aboutcode-toolkit]

The AboutCode Toolkit and ABOUT files provide a simple way to document the
origin, license, usage and other important or interesting information about
third-party software components that you use in your project.

You start by storing ABOUT files (a small YAML formatted text file with field/value pairs)
side-by-side with each of the third-party software components you use.
Each ABOUT file documents origin and license for one software.
For more information on the ABOUT file format, visit http://www.dejacode.org
There are many examples of ABOUT files (valid or invalid) in the testdata/
directory of the whole repository.

The current version of the AboutCode Toolkit can read these ABOUT files so that you
can collect and validate the inventory of third-party components that you use.

In addition, this tool is able to generate attribution notices and
identify redistributable source code used in your project to help you comply
with open source licenses conditions.

This version of the AboutCode Toolkit follows the ABOUT specification version 3.0 at:
https://github.com/nexB/aboutcode-toolkit/blob/develop/SPECIFICATION.rst

REQUIREMENTS

The AboutCode Toolkit is tested with Python 2.7 and 3.6 on Linux, Mac and Windows.
You will need to install a Python interpreter if you do not have one already
installed.

On Linux and Mac, Python is typically pre-installed. To verify which
version may be pre-installed, open a terminal and type:

python –version

	On Windows or Mac, you can download the latest Python here:
	https://www.python.org/downloads/

Download the .msi installer for Windows or the .dmg archive for Mac.
Open and run the installer using all the default options.

INSTALLATION

	Checkout or download and extract the AboutCode Toolkit from:
	https://github.com/nexB/aboutcode-toolkit/

	To install all the needed dependencies in a virtualenv, run (on posix):
	source configure

	or on windows:
	configure

REFERENCE

See https://github.com/nexB/aboutcode-toolkit/blob/master/REFERENCE.rst for reference
on aboutcode-toolkit usage.

TESTS and DEVELOPMENT

	To install all the needed development dependencies, run (on posix):
	source configure etc/conf/dev

	or on windows:
	configure etc/conf/dev

	To verify that everything works fine you can run the test suite with:
	py.test

HELP and SUPPORT

If you have a question or find a bug, enter a ticket at:

https://github.com/nexB/aboutcode-toolkit

For issues, you can use:

https://github.com/nexB/aboutcode-toolkit/issues

SOURCE CODE

	The AboutCode Toolkit is available through GitHub. For the latest version visit:
	https://github.com/nexB/aboutcode-toolkit

HACKING

We accept pull requests provided under the same license as this tool.
You agree to the http://developercertificate.org/

LICENSE

The AboutCode Toolkit is released under the Apache 2.0 license.
See (of course) the about.ABOUT file for details.

Reference

about

Syntax

about [OPTIONS] [COMMANDS]

Options:

--version Show the version and exit.
--help Show this message and exit.

Commands:

attrib LOCATION: directory, OUTPUT: output file
check LOCATION: directory
gen LOCATION: input file, OUTPUT: directory
inventory LOCATION: directory, OUTPUT: csv file

attrib

Syntax

about attrib [OPTIONS] LOCATION OUTPUT

LOCATION: Path to an ABOUT file or a directory containing ABOUT files.
OUTPUT: Path to output file to write the attribution to.

Options:

--inventory PATH Path to an inventory file.
--mapping Use for mapping between the input keys and the ABOUT field.
 names - mapping.config
--mapping-file Use a custom mapping file with mapping between input
 keys and ABOUT field names.
--template PATH Path to a custom attribution template.
--vartext TEXT Variable texts to the attribution template
--verbose Show all the errors and warning.
-q, --quiet Do not print any error/warning.
-h, --help Show this message and exit.

Purpose

Generate an attribution file which contains the all license information
from the LOCATION along with the license text.

Assume the following:

'/home/about_files/'** contains all the ABOUT files [LOCATION]
'/home/attribution/attribution.html' is the user's output path [OUTPUT]
'/home/project/component_list.csv' is the inventory that user want to be generated

$ about attrib /home/about_files/ /home/attribution/attribution.html

Options

--inventory

 This option allows you to define which ABOUT files should be used for attribution generation.
 For instance,
 '/home/project/component_list.csv' is the inventory that user want to be generated

$ about attrib --inventory /home/project/component_list.csv LOCATION OUTPUT

--mapping

 See mapping.config for details

--mapping-file

 Same behavior as `--mapping` but with custom mapping file

$ about attrib --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT

--template

 This option allows you to use your own template for attribution generation.
 For instance, if you have a custom template located at:
 /home/custom_template/template.html

$ about attrib --template /home/custom_template/template.html LOCATION OUTPUT

--vartext

 This option allow you to pass variable texts to the attribution template

$ about attrib --vartext "title=Attribution Notice" --vartext "header=Product 101" LOCATION OUTPUT

 Users can use the following in the template to get the vartext:
 {{ vartext_dict['title'] }}
 {{ vartext_dict['header'] }}

--verbose

 This option tells the tool to show all errors found.
 The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

	The following data are passed to jinja2 and, therefore, can be used for a custom template:
	
	about object: the about objects

	common_licenses: a common license keys list in licenses.py

	license_key_and_context: a dictionary list with license_key as a key and license text as the value

	license_file_name_and_key: a dictionary list with license file name as a key and license key as the value

	license_key_to_license_name: a dictionary list with license key as a key and license file name as the value

check

Syntax

about check [OPTIONS] LOCATION

LOCATION: Path to an ABOUT file or a directory with ABOUT files.

Options:

--verbose Show all the errors and warning
-h, --help Show this message and exit.

Purpose

Validating ABOUT files at LOCATION.

Options

--verbose

 This option tells the tool to show all errors found.
 The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

$ about check --verbose /home/project/about_files/

gen

Syntax

about gen [OPTIONS] LOCATION OUTPUT

LOCATION: Path to a JSON or CSV inventory file.
OUTPUT: Path to a directory where ABOUT files are generated.

Options:

--fetch-license KEY Fetch licenses text from a DejaCode API. and
 create <license>.LICENSE side-by-side
 with the generated .ABOUT file using data
 fetched from a DejaCode License Library. The
 following additional options are required:

 api_url - URL to the DejaCode License Library
 API endpoint

 api_key - DejaCode API key
 Example syntax:

 about gen --fetch-license 'api_url' 'api_key'
--license-notice-text-location PATH Copy the 'license_file' from the directory to
 the generated location.
--mapping Use for mapping between the input keys and
 the ABOUT field names - mapping.config
--mapping-file Use a custom mapping file with mapping between input
 keys and ABOUT field names.
--verbose Show all the errors and warning.
-q, --quiet Do not print any error/warning.
-h, --help Show this message and exit.

Purpose

Given an inventory of ABOUT files at location, generate ABOUT files in base directory.

Options

--fetch-license

 Fetch licenses text from a DejaCode API. and create <license>.LICENSE side-by-side
 with the generated .ABOUT file using data fetched from a DejaCode License Library.

 This option requires 2 parameters:
 api_url - URL to the DJE License Library
 api_key - Hash key to authenticate yourself in the API.

 In addition, the input needs to have the 'license_expression' field.
 (Please contact nexB to get the api_* value to use for this feature)

$ about gen --fetch-license 'api_url' 'api_key' LOCATION OUTPUT

--license-notice-text-location

 Copy the license files and notice files to the generated location based on the
 'license_file' and 'notice_file' value in the input from the directory

 For instance,
 the directory, /home/licenses_notices/, contains all the licenses and notices that you want:
 /home/license/apache2.LICENSE
 /home/license/jquery.js.NOTICE

$ about gen --license-notice-text-location /home/licenses_notices/ LOCATION OUTPUT

--mapping

 See mapping.config for details

--mapping-file

 Same behavior as `--mapping` but with custom mapping file

$ about attrib --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT

--verbose

 This option tells the tool to show all errors found.
 The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

inventory

Syntax

about inventory [OPTIONS] LOCATION OUTPUT

LOCATION: Path to an ABOUT file or a directory with ABOUT files.
OUTPUT: Path to the JSON or CSV inventory file to create.

Options:

--filter TEXT Filter for the output inventory.
-f, --format [json|csv] Set OUTPUT file format. [default: csv]
--mapping Use file mapping.config to collect the defined not supported fields in ABOUT files.
--mapping-file Use a custom mapping file with mapping between input
 keys and ABOUT field names.
--mapping-output FILE Use a custom mapping file with mapping between
 ABOUT field names and output keys
--verbose Show all the errors and warning.
-q, --quiet Do not print any error/warning.
-h, --help Show this message and exit.

Purpose

Collect a JSON or CSV inventory of components from ABOUT files.

Options

-filter TEXT

 Filter for the output inventory.

$ about inventory --filter "license_expression=gpl-2.0" LOCATION OUTPUT

The above command will only inventory the ABOUT files which have the "license_expression: gpl-2.0"

-f, --format [json|csv]

 Set OUTPUT file format. [default: csv]

$ about inventory -f json LOCATION OUTPUT

--mapping

 See mapping.config for details

--mapping-file

 Same behavior as `--mapping` but with custom mapping file

$ about inventory --mapping-file CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT

--mapping-output

 Same behavior as `--mapping-file` but with custom mapping file
 In the custom mapping file, the left side is the custom key name where
 the right side is the ABOUT field name. For instance,
 Component: name

 The "Component" is a custom field name for the output
 The "name" is one of the defaul ABOUT field name that user want to convert

$ about inventory --mapping-output CUSTOM_MAPPING_FILE_PATH LOCATION OUTPUT

--verbose

 This option tells the tool to show all errors found.
 The default behavior will only show 'CRITICAL', 'ERROR', and 'WARNING'

Special Notes

Multiple licenses support format

The multiple licenses support format for CSV files are separated by line break

	about_resource

	name

	license_key

	license_file

	test.tar.xz

	test

	
apache-2.0

mit

	
apache-2.0.LICENSE

mit.LICENSE

The multiple licenses support format for ABOUT files are by “grouping” with the keyword “licenses”

about_resource: test.tar.xz
name: test
licenses:
 - key: apache 2.0
 name: apache-2.0.LICENSE
 - key: mit
 name: mit.LICENSE

ABOUT File Specification v3.1.2

Purpose

An ABOUT file provides a simple way to document the provenance (origin and
license) and other important or interesting information about a software
component. An ABOUT file is a small YAML formatted text file stored in the
codebase side-by-side with the software component file or archive that it
documents. No modification of the documented software is needed.

The ABOUT format is plain text with field name/value pairs separated by a colon.
It is easy to read and create by hand and is designed first for humans, rather
than machines. The format is well-defined and structured just enough to make it
easy to process with software as well. It contains enough information to fulfill
key license requirements such as creating credits or attribution notices,
collecting redistributable source code, or providing information about new
versions of a software component.

Getting Started

A simple and valid ABOUT file named httpd.ABOUT may look like this:

about_resource: httpd-2.4.3.tar.gz
name: Apache HTTP Server
version: 2.4.3
homepage_url: http://httpd.apache.org
download_url: http://archive.apache.org/dist/httpd/httpd-2.4.3.tar.gz
license_expression: apache-2.0
licenses:
 - key: apache-2.0
 - file: apache-2.0.LICENSE
notice_file: httpd.NOTICE
copyright: Copyright (c) 2012 The Apache Software Foundation.

The meaning of this ABOUT file is:

	The file “httpd-2.4.3.tar.gz” is stored in the same directory and side-by-side
with the ABOUT file “httpd.ABOUT” that documents it.

	The name of this component is “Apache HTTP Server” with version “2.4.3”.

	The home URL for this component is http://httpd.apache.org

	The file “httpd-2.4.3.tar.gz” was originally downloaded from
http://archive.apache.org/dist/httpd/httpd-2.4.3.tar.gz

	In the same directory, “apache-2.0.LICENSE” and “httpd.NOTICE” are files that
contain respectively the license text and the notice text for this component.

	This component is licensed under “apache-2.0”

Specification

An ABOUT file is an ASCII YAML formatted text file.
Note that while Unicode characters are not supported in
an ABOUT file proper, external files can contain UTF-8 Unicode.

ABOUT file name

An ABOUT file name can use a limited set of characters and is suffixed with a
“.ABOUT” extension using any combination of uppercase and lowercase characters.

A file name can contain only these US-ASCII characters:

	digits from 0 to 9

	uppercase and lowercase letters from A to Z

	the following symbols: “_”, “-“, “+”, “.”, “(“, “)”, “~”, “[“, “]”, “{“, “}”

	The case of a file name is not significant. On case-sensitive file systems
(such as on Linux), a tool must report an error if two ABOUT files stored in
the same directory have the same lowercase file name. This is to ensure that
ABOUT files can be used across file systems. The convention is to use a
lowercase file name and an uppercase ABOUT extension.

Lines of text

An ABOUT file contains lines of US-ASCII text. Lines contain field names/values
pairs. The standard line ending is the LF character. The line ending characters
can be any LF, CR or CR/LF and tools must normalize line endings to LF when
processing an ABOUT file. Empty lines and lines containing only white spaces
that are not part of a field value continuation are ignored. Empty lines are
commonly used to improve the readability of an ABOUT file.

Field name

A field name can contain only these US-ASCII characters:

	digits from 0 to 9

	uppercase and lowercase letters from A to Z

	the “_” underscore sign.

	Field names are not case sensitive. For example, “HOMEPAGE_URL” and “HomePage_url”
represent the same field name.

	A field name must start at the beginning of a new line. It can be followed by
one or more spaces that must be ignored. These spaces are commonly used to
improve the readability of an ABOUT file.

Field value

The field value is separated from the field name by a “:” colon. The “:” colon
can be followed by one or more spaces that must be ignored. This also applies to
trailing white spaces: they must be ignored.

The field value is composed of one or more lines of plain US-ASCII printable text.

When a field value is a long string, additional continuation lines must start
with at least one space. In this case, the first space of an additional
continuation line is ignored and should be removed from the field value by tools.

For instance:

description: This is a long description for a
 software component that additional continuation line is used.

 When a field value contains more than one line of text, a 'literal block'
 (using |) is need.

For instance:

description: |
 This is a long description for a software component that spans
 multiple lines with arbitrary line breaks.

 This text contains multiple lines.

Fields are mandatory or optional

As defined in this specification, a field can be mandatory or optional. Tools
must report an error for missing mandatory fields.

Extension and ignored fields

An ignored field is a field with a name that is not defined in this
specification. Custom extension fields are also supported and must be processed
by tools as ignored fields unless a certain tool can process a certain extension
field.

Fields validation

When processing an ABOUT file, tools must report a warning or error if a field
is invalid. A field can be invalid for several reasons, such as invalid field
name syntax or invalid content. Tools should report additional validation error
details. The validation process should check that each field name is
syntactically correct and that fields contain correct values according to its
concise, common sense definition in this specification. For certain fields,
additional and specific validations are relevant such as checksum verification,
URL validation, path resolution and verification, and so forth. Tools should
report a warning for ignored fields.

Fields order and multiple occurrences

The field order does not matter. Multiple occurrences of a field name is not
supported.

The tool processing an ABOUT file or CSV/JSON input will issue an error when a
field name occurs more than once in the input file (as for any other ignored field).

Field referencing a file

The actual value of some fields may be contained in another file. This is useful
for long texts or to reference a common text in multiple ABOUT files such as a
common license text. In this case the field name is suffixed with “_file” and
the field value must be a path pointing to the file that contains the actual
value of the field. This path must be a POSIX path relative to the path of the
ABOUT file. The file content must be UTF-8-encoded text. This is in contrast
with field values contained directly in an ABOUT file that must be US-ASCII-
encoded text and allows to support non-ASCII text content.

For example, the full license text for a component is often stored in a separate
file named COPYING:

licenses:
 - file: linux.COPYING

In this example, the README file is stored in a doc directory, one directory
above the ABOUT file directory, using a relative POSIX path:

licenses:
 - file: ../docs/ruby.README

Field referencing a URL

The value of a field may reference URLs such as a homepage or a download. In
this case the field name is suffixed with “_url” and the field value must be a
valid absolute URL starting with ftp://, http:// or https://. URLs are
informational and the content they may reference is ignored. For example, a
download URL is referenced this way:

download_url: http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.4.20.tar.bz2

Flag fields

Flag fields have a “true” or “false” value. True, T, Yes or Y , x must be
interpreted as “true” in any case combination. False, F, No or N must be
interpreted as “false” in any case combination.

Referencing the file or directory documented by an ABOUT file

An ABOUT file documents one file or directory. The mandatory “about_resource”
field reference the documented file or directory. The value of the
“about_resource” field is the name or path of the referenced file or directory.

A tool processing an ABOUT file must report an error if this field is missing.

By convention, an ABOUT file is often stored in the same directory side-by-side
to the file or directory that it documents, but this is not mandatory.

For example, a file named django.ABOUT contains the following field to document
the django-1.2.3.tar.gz archive stored in the same directory:

about_resource: django-1.2.3.tar.gz

In this example, the ABOUT file documents a whole sub-directory:

about_resource: linux-kernel-2.6.23

In this example, the ABOUT file documents the current directory, using a “.”
period to reference it:

about_resource: .

Other Mandatory fields

When a tool processes an ABOUT file, it must issue an error if these mandatory
field are missing.

	about_resource: The resource this file referencing to.

	name: Component name.

Optional Information fields

	version: Component or package version. A component or package usually has a version, such as a
revision number or hash from a version control system (for a snapshot checked
out from VCS such as Subversion or Git). If not available, the version should
be the date the component was provisioned, in an ISO date format such as
‘YYYY-MM-DD’.

	spec_version: The version of the ABOUT file format specification used for this
file. This is provided as a hint to readers and tools in order to support
future versions of this specification.

	description: Component description, as a short text.

	download_url: A direct URL to download the original file or archive documented
by this ABOUT file.

	homepage_url: URL to the homepage for this component.

	changelog_file: Changelog file for the component.

	notes: Notes and comments about the component.

Optional Owner and Author fields

	owner: The name of the primary organization or person(s) that owns or provides
the component.

	owner_url: URL to the homepage for the owner.

	contact: Contact information (such as an email address or physical address)
for the component owner.

	author: Name of the organization(s) or person(s) that authored the component.

	author_file: Author file for the component.

Optional Licensing fields

	copyright: Copyright statement for the component.

	notice_file: Legal notice or credits for the component.

	notice_url: URL to a legal notice for the component.

	license_file: License file that applies to the component. For example, the
name of a license file such as LICENSE or COPYING file extracted from a
downloaded archive.

	license_url: URL to the license text for the component.

	license_expression: The license expression that apply to the component. You
can separate each identifier using ” or ” and ” and ” to document the
relationship between multiple license identifiers, such as a choice among
multiple licenses.

	license_name: The license short name for the license.

	license_key: The license key(s) for the component.

Optional Boolean flag fields

	redistribute: Set this flag to yes if the component license requires source
code redistribution. Defaults to no when absent.

	attribute: Set this flag to yes if the component license requires publishing
an attribution or credit notice. Defaults to no when absent.

	track_changes: Set this flag to yes if the component license requires tracking
changes made to a the component. Defaults to no when absent.

	modified: Set this flag to yes if the component has been modified. Defaults to
no when absent.

	internal_use_only: Set this flag to yes if the component is used internal only.
Defaults to no when absent.

Optional Extension fields

You can create extension fields by prefixing them with a short prefix to
distinguish these from the standard fields. You should provide documentation for
these extensions and create or extend existing tools to support these
extensions. Other tools must ignore these extensions.

Optional Extension fields to reference files stored in a version control system (VCS)

These fields provide a simple way to reference files stored in a version control
system. There are many VCS tools such as CVS, Subversion, Git, ClearCase and GNU
Arch. Accurate addressing of a file or directory revision in each tool in a
uniform way may not be possible. Some tools may require access control via
user/password or certificate and this information should not be stored in an
ABOUT file. This extension defines the ‘vcs’ field extension prefix and a few
common fields to handle the diversity of ways that VCS tools reference files and
directories under version control:

	vcs_tool: VCS tool such as git, svn, cvs, etc.

	vcs_repository: Typically a URL or some other identifier used by a VCS tool to
point to a repository such as an SVN or Git repository URL.

	vcs_path: Path used by a particular VCS tool to point to a file, directory or
module inside a repository.

	vcs_tag: tag name or path used by a particular VCS tool.

	vcs_branch: branch name or path used by a particular VCS tool.

	vcs_revision: revision identifier such as a revision hash or version number.

Some examples for using the vcs_* extension fields include:

vcs_tool: svn
vcs_repository: http://svn.code.sf.net/p/inkscape/code/inkscape_project/
vcs_path: trunk/inkscape_planet/
vcs_revision: 22886

or:

vcs_tool: git
vcs_repository: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
vcs_path: tools/lib/traceevent
vcs_revision: b59958d90b3e75a3b66cd311661535f94f5be4d1

Optional Extension fields for checksums

These fields support checksums (such as SHA1 and MD5)commonly provided with
downloaded archives to verify their integrity. A tool can optionally use these
to verify the integrity of a file documented by an ABOUT file.

	checksum_md5: MD5 for the file documented by this ABOUT file in the
“about_resource” field.

	checksum_sha1: SHA1 for the file documented by this ABOUT file in the
“about_resource” field.

Some examples:

checksum_md5: f30b9c173b1f19cf42ffa44f78e4b96c

AboutCode Data : ABCD

Summary

ABCD is an abbreviation for ABout Code Data. The AboutCode Data goal is
to provide a simple, standardized and extensible way to document data
about software code such that:

	It is a common way to exchange data about code between any nexB tools
by import and export.

	It becomes the preferred way to exchange data between nexB tools and
other tools.

	It could become a valuable structure to exchange data between any
tools concerned with data about software.

ABCD is technology and programming language neutral, preferring JSON or
YAML document formats.

ABC Data is structured around a few basic objects: Products, Components,
Packages, Files, Parties and Licenses. It is extensible to other
specific or future object types.

Objects have “attributes” that are simple name/value pairs. A value can
be either a plain value or another object or a list of objects and
attributes.

ABC Data is minimally specified by design: only a few basic objects and
attributes are documented with conventions to name and structure data
and how to define relationships between objects. There is only a small
reference dictionary for some well known attributes documented here.

The planned benefit for tools using ABC Data is simplified data exchange
and integration between multiple best-of-breed tools.

Context

There is currently no easy way to describe information about code and
software in a simple and standardized way. There have been many efforts
to provide this data in a more structured way such as:

	SPDX (focused on packages and licenses),

	DOAP (focused on projects),

	The original ABOUT metafile format, and

	The many different software package metadata formats (Maven, NPM,
RPM, Deb, etc).

These data structures are fragmented and generally too purpose- or
technology-specific.

Recently there have been efforts to collect and expose more data such
as:

	libraries.io (a catalog of packages, AGPL-licensed)
and dependencyci.com its companion commercial service,

	versioneye.com (a catalog of package versions updates, now
MIT-licensed),

	softwarearchive.org (an effort to build an all-encompassing software
source code archive),

	sources.debian.net (a Debian-focused code and metadata search
facility),

	searchcode.com (an add-supported source code search engine exposing
some metadata)

	appstream (a cross-distro effort to normalize desktop package
metadata access to Linux desktops
https://www.freedesktop.org/software/appstream/docs/).

These efforts are all useful, but they do not address how you can
consistently exchange data about code in a user-centric and
technology-neutral, normalized way.

Why does this matter? Software and code are everywhere. FLOSS code is
exploding with millions of components and packages. The data about this
code is out there somewhere but getting it is harder than needed. This a
problem of data normalization, aggregation and exchange.

Whether you consume or produce software, accessing and creating
normalized data about your code and the code you use should be made
easier such that:

	You can efficiently make code selection and re-use decisions,

	You can discover what is in your code, and

	You can continuously track updates, bugs, licenses, liveliness,
quality and security attributes of the code you use or consider
using.

With the notable exceptions of SPDX and the earlier versions of the
ABOUT format, available data formats about software have been designed
first for a specific technology (e.g. Linux distros) or programming
language (e.g. maven, npm, etc.) and documentation of code provenance
and related attributes has been secondary and minimal. In most cases,
the primary focus has been to provide first comprehensive support for
package installation, dependency resolution or package building and
provenance and licensing information is often treated with lesser
details.

ABCD: the AboutCode Data structure

ABCD is an abbreviation for ABout Code Data. The goal is to provide a
simple, standardized and extensible way to document things about
software code.

In contrast with other approaches, the AboutCode Data structure is
focused on providing data that is useful to users first and is not
limited to software package data only. AboutCode Data need not
be as strictly specified as traditional package manager data formats
because its purpose is not to drive a software build, package creation
or software installation nor is it to compute the resolution of
dependencies. It only provides information (metadata) about the code.

The vision for the ABC Data structure is to provide a common way to
exchange data about code between all nexB tools, such that these tools
can all import and export data about code seamlessly (TraceCode,
ScanCode, AboutCode Manager, AttributeCode, upcoming MineCode, etc.).
The ABCD structure should also be the preferred way to exchange data
about code between nexB tools and other tools. We may create small
adapters to convert other data formats in and out of the ABCD structure
and encourage other tool authors to natively support ABC Data, though
the main focus is on our tools.

The ABCD structure is technology and programming language neutral and
designed so that the parties exchanging data about code can do so
reliably with some minimal conventions; and that the data is easily
processed by machines and not hard to read by humans.

ABC Data is structured around “objects”. Objects have “attributes” that
are simple name/value pairs. A value can be either a plain value or
another object or a list of nested objects and attributes.

ABC Data is organized around:

	a few known object types,

	simple conventions to create lists of objects and describe object
relationships,

	simple conventions to create attributes as name/value pairs, and

	a small dictionary or vocabulary of well-known attribute names that
have a common definition across all tools.

ABC Data is “under-specified” by design: only a few essential objects
and attributes are documented here with the conventions on how to
structure the ABC Data.

Basic objects describing data about code

At the top level we have these main object types:

	Product(s): a software product, application or system such as a Cost
Accounting application.

	Component(s): a software component, such as the PostgreSQL 9 database
system, usually a significant or major version

	Package(s): a set of files that comprise a Component as used, such as
a postgresql-9.4.5-linux-x86.zip archive. The version is exact and
specific.

	File(s): any file and directory identified by a path, such as a
binary package or a source code directory or file.

And these secondary, important but less prominent object types:

	Party(ies): a person or an organization. An organization can be a
project, formally or informally organized, a company, a department
within a company, etc. A Party typically has contact information
(such as an email or physical address or home url). A Party may have
defaults that apply to much of its software (for an org that creates
software) such as a default Apache license for Apache Foundation
projects. Parties often relate to other objects through a
role relationship such as owner, author, maintainer, etc.

	License(s): information about the license of code. A License
typically has a name, text and additional categories. (tags or
attributes).

Each of these objects has a few identifying attributes and eventually
many tool- or application-specific data attributes. Each tool defines
and documents the attributes they can handle and care for. When some
agreement is reached on the definition of new attributes or objects, the
ABCD dictionary may be updated accordingly with new objects types such
as for software security, quality or other interesting aspects.

Objects are interrelated with other objects. Objects can relate to each
other via a reference using identifiers pointing to other objects or via
an embedded list of objects. The nature of the relationship between two
objects can also be specified with additional attributes as needed.

Here are typical relationships between objects:

[image: image1]

Here is an example of relationships for a simple Widget product:

[image: image2]

Tools can define any custom objects and some used more commonly may be
promoted to be documented here over time.

Attribute Names and Values

By convention, a tool receiving ABC Data should process only the data it
knows and should ignore unknown attributes or objects. This is important
to allow the data structure to evolve and provide some forward and
backward compatibility. When an ABCD payload contains data elements that
a receiver does not know about, the receiver should still be able to
process the known objects and attributes.

	Attributes are name/value pairs.

	Attribute names are always strings, not numbers, not booleans, not any
other data format. In these strings, leading and trailing white spaces
(spaces, tabs, line returns, etc) are not significant and can be safely
ignored or removed.

	Attribute values are one of the standard JSON types: string, number,
boolean or null. In strings, leading and trailing white spaces (spaces,
tabs, line returns, etc) are not significant and can be safely ignored
or removed.

	Self-explicit names should be used rather than obscure names or
abbreviations: names should be self-explicit and self-evident.

Except for the data organization conventions described here and the use
of the well-known object and attribute names, nothing is mandatory in
the ABCD format. This means that even partial, incomplete or sketchy
data about code can be transferred in this format.

The meaning of well known object names such as Product, Component,
Package, File, Party and License is defined in this document.

Name conventions

	Names are strings composed ONLY of ASCII letters, numbers or
underscores. Names cannot start with a number. Names cannot contain
spaces nor other punctuation, not even a dot or period.

	Names are NOT case sensitive: upper or lowercase does not matter and
the standard is to use lowercase. It is a mistake to use upper or
mixed case but this is something a parser receiving ABC Data should
recover from nicely by converting the names to lowercase.

	Names are made of English words: there is no provision currently for
non-English names. Tools that deal with multilingual content may
define their own conventions to provide content in other languages.
ABCD may add one of these conventions in the future.

	Parser implementation can be smarter and gentler: For names, anything
that is not ASCII or number or underscore can be accepted by a parser
and could be replaced by an underscore, including a starting digit if
any. Or a parser may provide a warning if there is an unknown name
that is very close to a well known name. Or a parser may accept
CamelCase and transform names to underscore_case and perform another
transformation to conventional ABC Data.

	Names are singular or plural: When a name refers to more than one
item, the name of the field is plural and the value is a list of
values. For instance “url” and “urls”.

	Top level known objects are ALWAYS plural and stored in lists:
“parties” or “files” or “products” or “components”. This makes it
easier to write tools because the top level types are always lists,
even when there is a single object in that list.

	A value must not be used as a name: in an attribute name/value pair,
the name is always a name, not a value and every value must have a
name.

	For instance, this JSON snippet would not be correct where a URL is
used as a name:

{"http://someurl.com": "this is the home URL"}

	Use rather this form to specify a name for the URL attribute:

{"url": "http://someurl.com", "note": "this is the home URL"}

	But this would be correct when using a list of plain values where
“urls” is plural:

{"urls": ["http://someurl.com", "http://someurl2.com"]}

	An attribute names without a value is not needed. Only names with
values are needed, and attributes without values can be omitted: each
tool may do what it wants for these cases. For instance it may be handy
to provide all attributes even if not defined in an API payload. But
when serializing data as YAML, meant for human editing, including all
empty values may not help with reading and processing the YAML text.
An undefined attribute without a set value should be assigned with
the null JSON value: this has the same meaning as if the attribute
was not specified and absent from the payload. If you want to specify
that an attribute has an empty value and does not have a value (as
opposed to have an unknown value) use an empty string instead.

	Avoid abbreviated names, with some exceptions. Names should always be
fully spelled out except for:

	url: uniform resource locator

	uri: uniform resource identifier

	urn: uniform resource name

	vcs: version control system

	uuid: universally unique identifier, used for uuid4 string
https://tools.ietf.org/html/rfc4122.html [https://tools.ietf.org/html/rfc4122.html&sa=D&ust=1487355496775000&usg=AFQjCNFPvpqA_MFbGaOmykUF8a5GGUKRSw]

	id: identifier

	info: information

	os: operating system

	arch: architecture

	For some common names we use the common compound form such as:

	codebase: and not code_base

	filename: and not file_name

	homepage: and not home_page

Well known attribute names include:

	name: the name of a product, component, license or package.

	version: the version of a product, component, package.

	description: description text.

	type: some type information about an object. For instance, a File
type could be: directory, file or link.

	keywords: a list of keywords about an object. For example, the
keywords of a component used to “tag” a component.

	path: the value is the path to a file or directory, either absolute
or relative and using the POSIX convention (a forward slash as
separator). For Windows paths, replace backslash with forward
slashes. Directories should end with a slash in a canonical form.

	key: the value is some key string, slug-like, case-insensitive and
composed only of ASCII letters and digits, dash, dot and underscore.
No white spaces. For example: org.apache.maven-parent

	role: the value describes the role of a Party in a relationship with
other objects. For instance a Party may be the
“owner” or “author” of a Component or Package.

	uuid: a uuid4 string
https://tools.ietf.org/html/rfc4122.html

	algorithms for checksums: to store checksums we use a name/value
pairs where the name is an algorithm such as sha1 and the value is a
checksum in hexadecimal such as “sha1”: “asasa231212” . The value is
the standard/default string created by command line tools such as
sha1sum. Supported algorithms may evolve over time. Common checksums
include md5, sha1, sha256, sha512.

	notes: some text notes. This is an exception to the singular/plural
rule for names: notes is a single text field and not a list.

As the usage of the ABCD structure matures, more well known names will
be documented in a vocabulary.

Value conventions

	Attribute values are one of the standard JSON types: string, number,
boolean or null. In strings, leading and trailing white spaces
(spaces, tabs, line returns, etc) are not significant and can be
safely ignored or removed.

	To represent a date/time use the ISO format such as 2016-08-15
defaulting to UTC time zone if the time zone is not specified in the
date/time stamp.

	All string values are UTF-8 encoded.

Well known name prefixes or suffixes can be used to provide a type hint
for the value type or meaning:

	xxx_count, xxx_number, xxx_level: the value is an integer number.
Example: results_count or curation_level

	date_xxx or xxx_date: the value is a date/time stamp in ISO format
such as 2016-08-16 (See https://www.ietf.org/rfc/rfc3339.txt).
Examples: last_modified_date, date_created

	xxx_url: the value is a URL for web http(s) or ftp url that points
to an existing valid web resource (that could possibly no longer
exist on the web). Example: homepage_url or api_url

	xxx_uri: the value is a URI typically used as an identifier that may
not point to an existing web resource. Example:
git://github.com/nexb/scancode-toolkit

	xxx_file or xxx_path: the value is a file path. This can come handy
for external files such as a license file. Example: notice_file

	xxx_filename: the value is a file name. Example: notice_filename

	xxx_text: the value is a long text. This is only a hint that it may
be large and may span multiple lines. Example: notice_text

	xxx_line: such as start_line and end_line: the value is a line
number. The first line number is 1.

	xxx_status: such as configuration_status. Indicates that the value
is about some status.

	xxx_name: such as short_name. Indicates that the value is a name.
Commonly used for long_name, short_name. The bare name shout be
preferred for the obvious and most common way an object is named.

	xxx_flag, is_xxx, has_xxx: such as is_license_notice. Indicates
that the string value is a boolean.

Object identifiers

We like objects to be identifiable. There is a natural way to identify
and name most objects: for instance, the full name of a person or
organization or the name and version of a Component or Package or the
path to a File, are all natural identifiers to an object.

However, natural names are not always enough to fully identify an object
and may need extra context to reference an object unambiguously. There
could be several persons or organizations with the same name at a
different address. Or the foo-1.4 Package could be available as a
public RubyGem and also as an NPM; or a private Python package foo-1.4
has been created by a company and is also available on Pypi. Or the
“foo” Package is the name of a Linux Package, an NPM and a Ruby Package
but these three packages are for unrelated components.

Hence each object may need several attributes to be fully identifiable.

For example, public package managers ensure that a name is unique within
the confines of a source. “logging” is the unique name of a single
Sourceforge project at
https://sourceforge.net/projects/logging/ .
“logging” is the unique name of an Apache project at the Apache
Foundation http://logging.apache.org/ .

Yet, these two names point to completely different software. In most
cases, providing information about the “source” where an identifier is
guaranteed to be unique is enough to ensure proper identification. This
“source” is easily identified by its internet source name, and an
internet source name is guaranteed to be unique globally. The “source”
of identifiers is not mandatory but it is strongly encouraged to use as
an attribute to provide good unique identifiers. Still, tools exchanging
ABC Data must be able to exchange under-specified and partially
identified data and may sometimes rely on comparing many attributes of
two objects to decide if they are the same.

The minimal way to identify top level objects is the combination of a
“source” and a unique identifier within this source. The source can be
implicit when two parties are exchanging data privately or explicit
using the “source” attribute.

Within a source, we use the most obvious and natural identifies for an
object. For example:

	For Products, Components and Packages we can use their name and
version.

	For Files we use a path of a file or directory, possibly relative to
a package or a product codebase; or a checksum of a file or archive
such as a sha1.

	For Parties, we use a name possibly supplemented with a URL or email.

	For all object types we can use a “universally unique id” or UUID-4
(https://tools.ietf.org/html/rfc4122.html)

	For all object types, we can use a key, which is a slug-like string
identifier such as a license key.

	For all object types, we can use a URN
(https://en.wikipedia.org/wiki/Uniform_resource_name) Tools may
also define their own URNs, namespaces and names such as a DejaCode
urn is, urn:dje:component:16fusb:1.0

Beyond direct identification, an object may have several alternative
identifiers, aka “external references”. For instance a Package may have
different names and slightly different versions in the Linux, Debian or
Fedora distros and a Pypi Package with yet another name where all these
Packages are for the same Component and the same code. Or a Party such
as the Eclipse Foundation may be named differently in DejaCode and the
NVD CPEs.

To support these cases, the “external_reference(s)” attribute can be
used where needed in any object to reference one or more external
identifiers and what is the source for this identifier (note: “external”
is really a matter of point of view of who owns or produces the ABC
Data). An attribute with name suffix of “xxx_reference” may also be
used to provide a simpler external reference, such as “approval_reference”.

For example, this ABC Data could describe the external id of Party to a
CPE and to TechnoPedia (here in a YAML format):

parties:
 - name: Apache Foundation
 homepage_url: http://apache.org
 type: organization
 external_references:
 - source: nvd.nist.gov
 identifier: apache
 - source: technopedia.com
 identifier: Apache Foundation (The)
 - source: googlecode.com
 identifier: apache-foundation

Other identifiers may also be used, as needed by some tools, such as
in hyperlinked APIs.

Organizing data and relationships

Describing relationships between objects is essential in AboutCode Data.
There are two ways to describe these relationships: by referencing or by
embedding objects.

When using a reference, you relate objects by providing identifiers to
these objects and may provide additional object details in separate
lists. When embedding, you include not only the reference but also the
related object details in another object data. This could include all
data about an object or a subset as needed.

For example, this components list embeds a list of two packages.

Note: “components” is always a list, even when it has a single component:

{"components": [{
 "source": "http://apache.org",
 "name": "Apache httpd",
 "version": "2.3",
 "packages": [
 {"name": "httpd",
 "version": "2.3.4",
 "download_url": "http://apache.org/dist/httpd/httpd-2.3.4.zip",
 "sha1": "acbf23256361abcdf",
 "size": 3267,
 "filename": "httpd-2.3.4.zip"
 },

 {"name": "httpd",
 "version": "2.3.5",
 "download_url": "http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",
 "sha1": "ac8823256361adfcdf",
 "size": 33267,
 "filename": "httpd-2.3.5.tar.gz"
 }
]
}]}

In this example, the component list references two packages that are
listed separately and uses the checksum as package identifiers for the
reference. This data is strictly equivalent to the previous example but
using a different layout. When all the data is provided, the effect of
embedding or referencing objects results in the same data, just
organized differently:

{"components": [{
 "source": "http://apache.org",
 "name": "Apache httpd",
 "version": "2.3",
 "packages": [
 {"sha1": "aacbf23256361abcdf"},
 {"sha1": "ac8823256361adfcdf"}
]
}],

"packages": [
 {"name": "httpd", "version": "2.3.4",
 "download_url":
 "http://apache.org/dist/httpd/httpd-2.3.4.zip",
 "sha1": "acbf23256361abcdf", "size": 23267, "filename": "httpd-2.3.4.zip"},

 {"name": "httpd", "version": "2.3.5",
 "download_url": "http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",
 "sha1": "ac8823256361adfcdf", "size": 33267, "filename": "httpd-2.3.5.tar.gz"}
]}

In this third example the packages are referencing one component
instead. That component is always wrapped in a components list. The
component detail data is not provided. The details may be available
elsewhere in a tool that tracks components:

"packages": [
 {"name": "httpd", "version": "2.3.4",
 "download_url": "http://apache.org/dist/httpd/httpd-2.3.4.zip",
 "sha1": "acbf23256361abcdf", "size": 23267, "filename": "httpd-2.3.4.zip",
 "components": [
 {"source": "http://apache.org", "name": "Apache httpd", "version": "2.3"}
]
 },

 {"name": "httpd", "version": "2.3.5",
 "download_url":"http://apache.org/dist/httpd/httpd-2.3.5.tar.gz",
 "sha1": "ac8823256361adfcdf", "size": 33267, "filename": "httpd-2.3.5.tar.gz",
 "components": [
 {"source": "http://apache.org", "name": "Apache httpd", "version": "2.3"}
]
 }
]

Relationships can be documented with this approach in different ways.
Typically when the primary concern is about a Product, then the Product
object may embed data about its Components. When the primary concern is
Packages, they may embed or reference Products or Components or files.
For example:

	A tool may prefer to provide data with products or components as top level
objects. The components used in a Product are naturally embedded in the products.

	A tool concerned more with files, will provide files as top
level objects and may embed package details when they are found for
a file or directory path.

	Another tool may focus on packages and provide packages first with
component references and possibly embedded files. A matching tool
may provide packages first and reference matched files. The file
paths of a package are naturally embedded in the package, though
using references may help keep the data simpler when there is a large
volume of files.

	A tool that generates attribution documentation may focus
first on components and second on licenses or packages references.

	A tool dealing with security vulnerabilities may define a
Vulnerability object and reference Packages and Files that are
affected by a Vulnerability.

To better understand the embedding or referencing relationships:

	using references is similar to a tabular data layout, akin to a
relational database table structure

	using embedding is similar to a tree data layout such as in a
file/directory tree or nested data such as XML.

Another way to think about these relationships is a “GROUP BY” statement
in SQL. The data can be grouped-by Component, then Packages or
grouped-by Files then Components.

Both referencing and embedding layouts can be combined freely and are
not mutually exclusive. When using both at the same time, some care is
needed to avoid creating documents with conflicting or duplicated data
that is referenced and embedded at the same time.

Using references is often useful when there is an agreement on how to
reference objects between two tools or parties. For instance, when using
nexB tools, a unique and well defined license key is used to reference a
license rather than embedding the full license details. A concise
reference to the name and version of a public package from a well known
package repository such as RPM or Maven can be used to the same effect.
Or an SPDX license identifier can be used to reference an SPDX-listed
license without having to embed its full license text.

The nature of the relationship between two objects can be specified when
it is not obvious and requires some extra specification. Each tool can
define additional attributes to document these. For instance a common
relationship between a party and a product or component is a role such
as owner. For packages a role can be maintainer, author, etc. Or the
license of a file or package may be the “asserted” license by the
project authors. It may differ from the “detected” license from a scan
or code inspection and may further differ from a “concluded” license or
a “selected” license when there is a license choice. At the package and
license level the types of relationships documented in the SPDX
specification are a good source for more details. For example this
component references two parties where one is the author and the other
is the maintainer documented using a role attribute:

"components": [{
 "source": "http://apache.org",
 "name": "Apache httpd",
 "version": "2.3",
 "parties": [
 {"name": "John Doe", "type": "person", "role": "author"},
 {"name": "Jane Smith", "type": "person", "role": "maintainer"},
 {"name": "Jane Smith", "type": "person", "role": "owner"},
]
}]

Document format conventions

The default ABC Data format is JSON (though it can be serialized to
anything else that would preserve its structure). YAML is also supported
and preferred for storage of simple documents that document one or a few
top level objects and that need to be edited by a human.

The data structure by nested name/value pairs attributes and lists of
values maps naturally to the corresponding JSON and YAML constructs. In
JSON-speak these are arrays (lists) and objects (name/value pairs).

ABC Data can be provided as simple files or embedded in some API
payload. As files, their content can be either JSON or YAML and should
have either a .json or .yml extension by convention. For backwards
compatibility with previous AboutCode conventions, the .ABOUT extension
can be used for YAML documents. For instance this is used in the legacy
about_code_tool and its successors. The DocumentCode tool can store
individual attribution data in a .ABOUT yml file.

The top level structure of an ABC Data block is always a JSON object or
YAML dictionary. Depending on the context this top level structure may
be wrapped in another data structure (for instance when exchanging
AboutCode Data in some web api, the API may provide ABC Data as a
payload in a “results” or “body” or “data” block and also have some
“headers” or “meta” block).

The top level elements must contain at least one of the object names and
a list of objects such as here with a list of files:

files:
 - path: this/foo/bar
 size: 123
 sha1: aaf35463472abcd
 - path: that/baz

Optionally an “aboutcode_version” attribute can be added at the top
level to document which version of the AboutCode Data structure is used
for a document. For example: aboutcode_version: 4.0

Order of attributes matters to help reading documents: tools that write
ABC Data should attempt to use a consistent order for objects and
attribute names rather than a random ordering. However, some tools may
not be able to set a specific order so thi is only a recommendation. The
preferred order is to start with identifiers and keys and from the most
important to the least important attributes, followed by attributes
grouped logically together, followed by related objects.

References between documents and payload, embedding other files

ABC Data may reference other data. For instance in a hyperlinked REST
API a list of URLs to further invoke the API and get license’ details
may be provided with an api_url attribute to identify which API calls
to invoke. The ways to reference data and the semantics and mechanics of
each of these embeddings or references needed to get the actual data are
not specified here. Each tool may offer its own mechanism. A convention
for an hyperlinked REST API JSON payload could be to use
api_url(s) identifier to specify additional “GET”able endpoints. The
AttributeCode tool use *_file attributes in YAML or JSON documents
to reference external license and notices text files to load with the
text content.

Another convention is used in ScanCode to reference license texts and
license detection rules by key:
An ABC Data YAML file contains the ABC Data. And side by side there is a
file with the same base name and a LICENSE, SPDX or NOTICE, RULE,
extension that contains the actual text corresponding to the license,
the SPDX text or the rule text. The convention here is to use an
implicit reference between files because they have the same base name
and different extensions.

In the future, we may specify how to embed an external ABC Data file in
another ABC Data file; this would only apply to file-based ABC Data
payload though and could not apply to hyperlinked REST APIs.

Document-as-files naming, exchange and storage

Each tool handling ABC Data may name an ABC Data file in any manner and
store the data in any way that is appropriate. The structure is a set of
data exchange conventions and may be used for storage but nothing is
specified on how to do this.

For consistency, tools consuming AboutCode Data are encouraged to use
the same data structure internally and in their user interface to
organize and name the data, but this is only a recommendation.

For instance, the AttributeCode tool uses a convention to store ABC Data
as YAML in a file with a .ABOUT extension and uses the ABC Data structures
internally and externally.

When exchanging data (for instance over an API), the API provider of ABC
Data should support a request to return either embedded data or data by
reference and ideally allow the caller to specify which objects and
attributes it is interested in (possibly in the future using something
like GraphQL).

When interacting with tools through an API, the conversation could
start by sending an ABC Data payload with some extra request data and
receiving an ABC Data payload in return. For instance, when requesting
matching packages from a matching tool, you could start by passing scan
data with checksums for several files at once and receive detailed data
for each of the matched files or packages.

Documenting and validating attributes

Each tool handling ABC Data may only be interested in processing certain
objects and attributes when accepting data in, or when providing data
out. Attributes that are unknown should be ignored. To document which
objects and which attributes a tool can handle, a tool should provide
some documentation. The documentation format is not specified here, but
it could use a JSON schema in the future. This should include
documentation regarding if and how data is validated, and when and how
errors or warnings are triggered and provided when there is a validation
error. For example, a validation could be to check that an SPDX license
id exists at SPDX or that a URL is valid.

Notes on YAML format

YAML is the preferred file format for ABC Data destined for reading or
writing primarily by humans.

	Block-style is better.

	When you write AboutCode Data as YAML, you should privilege block-style
and avoid flow-style YAML which is less readable for humans.

	Avoid Multi-document YAML.

	Multi-document YAML documents should be avoided (when using the —
separators).

	Beware of parser shenanigans: Most YAML parsers recognize and convert
automatically certain data types such as numbers, booleans or dates.
You should be aware of this because the ABC Data strings may contain
date stamps. You may want to configure a YAML parser to deactivate some
of these automated format conversions to avoid unwanted conversions.

Notes on JSON Format

JSON is the preferred file format for ABC Data destined for reading and
writing primarily by machines.

	“Streamable” JSON with JSON-lines.

A large JSON document may benefit from being readable line-by-line
rather than loaded all at once in memory. For this purpose, the
convention is to use JSON lines where each line in the document is a
valid JSON document itself: this enables reading the document in
line-by-line increments. The preferred way to do so is to provide one
ABCD top level object per document where the first line contains meta
information about the stream such as a notice, a tool version or the
aboutcode version.

	Avoid escaped slash.

The JSON specification says you CAN escape forward slash, but this is
optional. It is best to avoid escaping slash when not needed for better
readability.

For instance for URLs this form:

"https://enterprise.dejacode.com/component_catalog/nexB/16fusb/1.0/"

should be preferred over this escaped form when backslashes are not
needed:

"https:\\/\\/enterprise.dejacode.com\\/component_catalog\\/nexB\\/16fusb\\/1.0\\/"

Notes on embedding ABC Data in source code files.

It could be useful to include ABC Data directly in a source code file,
such as to provide structured license and provenance data for a single
file. This requires of course a file modification. While this is not a
preferred use case, it can be handy to document your own code one file
at a time. Using an external ABC Data file should be preferred but here
are conventions for this use case:

	The ABC Data should be embedded in a top level block of comments.

	Inside that block of comments the preferred format is YAML.

	How a tool collects that ABC Data when embedded in code is to be
determined.

	Tools offering such support should document and eventually enforce
their own conventions.

Notes on spreadsheet and CSV files

ABC Data does not support or endorse using CSV or spreadsheets for data
exchange.

CSV and other spreadsheet file formats are NOT recommended to store ABC
Data. In most cases you cannot store a correct data set in a spreadsheet.
However, these tools are also widely used and convenient.
Here are some recommendations when you need to communicate ABC data in
a CSV or spreadsheet format: even though ABC Data is naturally nested
and tree-like, it should be possible to serialize certain ABCD objects
as flat, tabular data.

	Naming columns

The table column names may need to be adjusted to correctly reference
the multiple level of object and attribute nesting using a dot as a
separator. The dot or period is otherwise not allowed in attribute
names. For example, you could use files.path for files or
components.name to reference a component name. Some tools may prefer to
create tabular files with their own column names and layout, and provide
mappings to ABC Data attribute and object names.

	Example for an inventory:

Since ABC Data can be related by reference, the preferred (and
cumbersome) way to store ABC Data in a spreadsheet is to use one tab for
each object type and use identifying attributes to relate objects
between each others across tabs. For instance, in a Bill of Materials
(BOM) spreadsheet for a Product, you could use a tab to describe the
Product attributes and another tab to describe the Components used in
this Product and possibly additional tabs to describe the related
packages and files corresponding to these

	Care is needed for Packages, Components and other names and for dates,
versions, unicode and UTF-8 to avoid damaging content (aka. mojibake)

Spreadsheet tools such as Excel or LibreOffice automatically recognize
and convert data to their own format: a date of 20016-08-17 may be
converted to a date number when a CSV is loaded and difficult to recover
as a correct original date stamp string afterwards. Or a version 1.0 may
be irreversibly converted to 1 or 1.90 to 1.9 losing important version
information.

Spreadsheet tools may not recognize and handle properly UTF-8 texts and
damage descriptions and texts. These tools may also treat strings
starting with the equal sign as a formula. When incorrectly recognizing
special accentuated characters this may damage texts creating what is
called “mojibake” (See https://en.wikipedia.org/wiki/Mojibake)

Always use these tools with caution and be prepared for damage to your
data if you use these tools to save or create ABC Data.

Impact on AttributeCode

As an integration tool, AttributeCode itself may specify only a very few elements.

The new structure will need to be implemented. Here could be an example
in YAML:

aboutcode_version: 4.0
components:
 - source: dejacode.com
 name: bitarray
 version: 0.8.1
 homepage_url: https://github.com/ilanschnell/bitarray
 copyright: Copyright (c) Ilan Schnell and others
 files:
 - path: some/directory/
 type: dir
 - path: bitarray-0.8.1-cp27-cp27m-macosx_10_9_intel.whl
 - path: someotherdir/bitarray-0.8.1-cp27-cp27m-manylinux1_i686.whl
 - path: bitarray-0.8.1-cp27-cp27m-manylinux1_x86_64.whl
 - path: bitarray-0.8.1-cp27-cp27m-win_amd64.whl
 - path: bitarray-0.8.1-cp27-cp27m-win32.whl
 - path: bitarray-0.8.1-cp27-cp27mu-manylinux1_i686.whl
 - path: bitarray-0.8.1-cp27-cp27mu-manylinux1_x86_64.whl
 - path: bitarray-0.8.1-cp27-none-macosx_10_6_intel.whl
 - path: bitarray-0.8.1.tar.gz

 parties:
 - role: owner
 name: Ilan Schnell

 packages:
 - download_url: http://pypi.python.org/packages/source/b/bitarray/bitarray-0.8.1.tar.gz
 sha1: 468456384529abcdef342

 license_expression: psf

 licenses:
 - source: scancode.com
 key: psf
 text_file: PSF.LICENSE

And here would be similar data in JSON:

{"components": [{
 "name": "bitarray",
 "version": "0.8.1"
 "homepage_url": "https://github.com/ilanschnell/bitarray",
 "copyright": "Copyright (c) Ilan Schnell and others",
 "license_expression": "psf",
 "licenses": [{"key": "psf", "text_file": "PSF.LICENSE", "source": "scancode.com"}],
 "packages": [{"download_url": "http://pypi.python.org/packages/source/b/bitarray/bitarray-0.8.1.tar.gz"
 "sha1": "468456384529abcdef342"
 }],
 "parties": [{"name": "Ilan Schnell", "role": "owner"}],

 "files": [{"path": "some/directory/", "type": "dir"},
 {"path": "bitarray-0.8.1-cp27-cp27m-macosx_10_9_intel.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27m-manylinux1_i686.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27m-manylinux1_x86_64.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27m-win_amd64.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27m-win32.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27mu-manylinux1_i686.whl"},
 {"path": "bitarray-0.8.1-cp27-cp27mu-manylinux1_x86_64.whl"},
 {"path": "bitarray-0.8.1-cp27-none-macosx_10_6_intel.whl"},
 {"path": "bitarray-0.8.1.tar.gz"}],
 }],

 aboutcode_version: "4.0"}

Impact on ScanCode Toolkit

The new format will need to be implemented for scan results in general
and for packages in particular.

ScanCode will specify Package and several attributes related to scanning
and referencing clues for files, directories and packages.

Alternatively Packages could be extracted to an independent PackagedCode library.

The changes will minimize impact on the layout of the scan results. Here is an
example of a scan payload in ABCD format: this is essentially the standard scan
format:

{
 "scancode_notice": "Generated with ScanCode and provided",
 "scancode_version": "2.0.0.dev0",
 "files_count": 7,
 "files": [
 {
 "path": "samples/JGroups/src/",
 "type": "directory",
 "files_count": 29
 "licenses" : [
 { "key":"apache-2.0",
 "concluded": true}
]
 }
 {
 "path": "samples/JGroups/src/GuardedBy.java",
 "date": "2015-12-10",
 "programming_language": "Java",
 "sha1": "981d67087e65e9a44957c026d4b10817cf77d966",
 "name": "GuardedBy.java",
 "extension": ".java",
 "file_type": "ASCII text",
 "is_text": true,
 "is_source": true,
 "md5": "c5064400f759d3e81771005051d17dc1",
 "type": "file",
 "is_archive": null,
 "mime_type": "text/plain",
 "size": 813,
 "copyrights": [
 {
 "end_line": 12,
 "start_line": 9,
 "holder": "Brian Goetz and Tim Peierls",
 "statement": "Copyright (c) 2005 Brian Goetz and Tim Peierls"
 }
],
 "licenses": [
 { "detected": true,
 "key": "cc-by-2.5",
 "short_name": "CC-BY-2.5",
 "homepage_url": "http://creativecommons.org/licenses/by/2.5/",
 "dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/cc-by-2.5/",
 "text_url": "http://creativecommons.org/licenses/by/2.5/legalcode",
 "owner": {
 "name": "Creative Commons",
 },
 "detection_score": 100.0,
 "start_line": 11,
 "end_line": 11,
 "category": "Attribution",
 "external_reference": {
 "source": "spdx.org",
 "key": "CC-BY-2.5"
 "url": "http://spdx.org/licenses/CC-BY-2.5",
 },
 }
],
 },
 {
 "path": "samples/JGroups/src/ImmutableReference.java",
 "date": "2015-12-10",
 "md5": "48ca3c72fb9a65c771a321222f118b88",
 "type": "file",
 "mime_type": "text/plain",
 "size": "1838",
 "programming_language": "Java",
 "sha1": "30f56b876d5576d9869e2c5c509b08db57110592",
 "name": "ImmutableReference.java",
 "extension": ".java",
 "file_type": "ASCII text",
 "is_text": true,
 "license_expression": "lgpl-2.1-plus and lgpl-2.0-plus",
 "is_source": true,
 "copyrights": [{
 "end_line": 5,
 "start_line": 2,
 "holder": "Red Hat, Inc.",
 "statement": "Copyright 2010, Red Hat, Inc."
 }],
 "licenses": [
 { "detected": true,
 "key": "lgpl-2.1-plus",
 "category": "Copyleft Limited",
 "homepage_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html",
 "start_line": 7,
 "end_line": 10,
 "short_name": "LGPL 2.1 or later",
 "owner": "Free Software Foundation (FSF)",
 "dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/lgpl-2.1-plus/",
 "detection_score": 100.0,
 "external_reference": {
 "url": "http://spdx.org/licenses/LGPL-2.1+",
 "source": "spdx.org",
 "key": "LGPL-2.1+"
 }
 },
 { "concluded": true,
 "key": "lgpl-2.0-plus",
 "short_name": "LGPL 2.0 or later",
 "homepage_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html",
 "end_line": 20,
 "dejacode_url": "https://enterprise.dejacode.com/license_library/Demo/lgpl-2.0-plus/",
 "text_url": "http://www.gnu.org/licenses/old-licenses/lgpl-2.0-standalone.html",
 "owner": "Free Software Foundation (FSF)",
 "start_line": 12,
 "detection_score": 47.46,
 "category": "Copyleft Limited",
 "external_reference": {
 "url": "http://spdx.org/licenses/LGPL-2.0+",
 "source": "spdx.org",
 "key": "LGPL-2.0+"
 }
 }
],
 },
 {
 "path": "samples/arch/zlib.tar.gz",
 "file_type": "gzip compressed data, last modified: Wed Jul 15 11:08:19 2015, from Unix",
 "date": "2015-12-10",
 "is_binary": true,
 "md5": "20b2370751abfc08bb3556c1d8114b5a",
 "sha1": "576f0ccfe534d7f5ff5d6400078d3c6586de3abd",
 "name": "zlib.tar.gz",
 "extension": ".gz",
 "size": 28103,
 "type": "file",
 "is_archive": true,
 "mime_type": "application/x-gzip",
 "packages": [
 {
 "type": "plain tarball"
 }
],
 }
]
}

AboutCode Manager

As a primary GUI for data review and integration, AboutCode Manager
will need to be fluent in ABC Data to read/write ABC Data locally and
remotely through API from several sources.

The short term changes would include:

	Support reading ABC Data from ScanCode

	Writing ABC Data, adding conclusions as related objects in the proper
lists

New and Future tools

	TraceCode: would likely specify low level attributes for files (such
as debug symbols, etc) and how files are related from devel to deploy
and back.

	VulnerableCode: would likely specify a new Vulnerability object and
the related attributes and may track several identifiers to the NIST
NVD CPE and CVE.

	DeltaCode: would likely specify attributes to describe the changes
between codebases, files, packages.

Copyright (c) 2016 nexB Inc.

Help

AboutCode is a suite of open source projects.

AboutCode Projects

	ScanCode Toolkit [https://github.com/nexB/scancode-toolkit]: This is a set of code scanning tools to detect the origin and license of code and dependencies. ScanCode Toolkit uses a plug-in architecture to run a series of scan-related tools in one process flow. This is the most popular project and is used by hundreds of software teams. https://github.com/nexB/scancode-toolkit . The lead maintainer is @pombredanne

	Scancode Workbench [https://github.com/nexB/scancode-workbench] (formerly AboutCode Manager) This is a desktop application (based on Electron) to review the results of a scan and document your conclusions about the origin and license of software components and packages. https://github.com/nexB/aboutcode-manager . The lead maintainer is @majurg

	AboutCode Toolkit [https://github.com/nexB/aboutcode-toolkit]: This is a set of command line tools to document the provenance of your code and generate attribution notices. AboutCode Toolkit uses small yaml files to document code provenance inside a codebase. https://github.com/nexB/aboutcode-toolkit . The lead maintainer is @chinyeungli

	TraceCode Toolkit [https://github.com/nexB/tracecode-toolkit]: This is a set of tools to trace files from your deployment or distribution packages back to their origin in a development codebase or repository. The primary tool uses strace https://github.com/strace/strace/ to trace system calls on Linux and construct a build graph from syscalls to show which files are used to build a binary. We are contributors to strace. Maintained by @pombredanne

	Conan [https://github.com/nexB/conan]: “conan” stands for “CONtainer ANalysis” and is a tool to analyze the structure and provenance of software components in Docker images using static analysis. https://github.com/nexB/conan Maintained by @pombredanne

	license-expression [https://github.com/nexB/license-expression/]: This is a library to parse, analyze, compare and normalize SPDX-like license expressions using a boolean logic expression engine. See https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60 to understand what a license expression is. See https://github.com/nexB/license-expression for the code. The underlying boolean engine is at https://github.com/bastikr/boolean.py . Both are co-maintained by @pombredanne

	ABCD aka AboutCode Data [https://github.com/AyanSinhaMahapatra/aboutcode/blob/master/docs/source/aboutcode-data/abcd.rst]: is a simple set of conventions to define data structures that all the AboutCode tools can understand and use to exchange data. The specification lives in this repository. .ABOUT files and ScanCode tooklit data are examples of this approach. Other projects such as https://libraries.io and OSS Review Toolkit [https://github.com/heremaps/oss-review-toolkit] also use these conventions.

	DeltaCode [https://github.com/nexB/deltacode] is a command line tool to compare scans and determine if and where there are material differences that affect licensing. The lead maintainer is @majurg

	VulnerableCode [https://github.com/nexB/vulnerablecode]: an emerging server-side application to collect and track known package vulnerabilities.

License

AboutCode includes documents that are dedicated to the Public Domain using the
Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication:
http://creativecommons.org/publicdomain/zero/1.0/

Document Maintenance

Document Software Setup

AboutCode documentation is built using Sphinx.
See http://www.sphinx-doc.org/en/master/index.html

AboutCode documentation is distributed using “Read the Docs”.
See https://readthedocs.org/

Individual document files are in reStructuredText format.
See http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

You create, build, and preview AboutCode documentation on your local machine.

You commit your updates to the AboutCode repository on GitHub, which triggers an automatic rebuild of https://aboutcode.readthedocs.io/en/latest/index.html

Clone AboutCode

To get started, create or identify a working directory on your local machine.

Open that directory and execute the following command in a terminal session:

git clone https://github.com/nexB/aboutcode.git

That will create an /aboutcode directory in your working directory.
Now you can install the dependencies in a virtualenv:

cd aboutcode
virtualenv -p /usr/bin/python3.6 docs-venv
source bin/activate

Now you can install Sphinx and the format theme used by readthedocs:

pip install Sphinx sphinx_rtd_theme doc8

Now you can build the HTML documents locally:

cd docs
make html

Assuming that your Sphinx installation was successful, Sphinx should build a local instance of the documentation .html files:

open build/html/index.html

In case this command did not work, for example on Ubuntu 18.04 you may get a message like “Couldn’t get a file descriptor referring to the console”, try:

see build/html/index.html

You now have a local build of the AboutCode documents.

Improve AboutCode Documents

Before you begin creating and modifying AboutCode documents, be sure that you understand the basics of reStructuredText as explained at http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Ensure that you have the latest AboutCode files:

git pull
git status

Use your favorite text editor to create and modify .rst files to make your documentation improvements.

Review your work:

cd docs
make html
open build/html/index.html

AboutCode uses Travis-CI to test build status and check links, so run this script at your local system before creating a Pull Request.

cd docs
./scripts/sphinx_build_link_check.sh

Share AboutCode Document Improvements

Follow standard git procedures to upload your new and modified files. The following commands are examples:

git status
git add source/index.rst
git add source/how-to-scan.rst
git status
git commit -m "New how-to document that explains how to scan"
git status
git push
git status

The AboutCode webhook with ReadTheDocs should rebuild the documentation. You can review your results online.

Basic Tutorials

	How to Run a Scan
	Setting up a Virtual Environment

	Setting up Scancode Toolkit

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	How to Visualize Scan results
	Setting up Scancode Workbench

	Importing Data into Scancode Workbench

	Visualization

	How To Extract Archives
	Usage:

	All Extractcode Options

	How to specify Scancode Output Format
	JSON

	Print to stdout (Terminal)

	HTML

	Custom Output Format

	How to set what will be detected in Scan
	All “Basic” Scan Options

	Different Scans

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up a Virtual Environment

Scancode Toolkit 3.1.1 and Workbench 3.1.0 is not compatible with python 3.x so we will create a
virtual environment [https://docs.python-guide.org/dev/virtualenvs/] using the Virtualenv
tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan3.1.1:

virtualenv -p /usr/bin/python2.7 venv-scan3.1.1
source venv-scan3.1.1/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 3.1.1 tarball or .zip archive from the
Toolkit GitHub Release [https://github.com/nexB/scancode-toolkit/releases/tag/v3.1.1] Page under
assets options. Download and extract the Archive from command line:

For .zip archive:

unzip scancode-toolkit-3.1.1.zip

For .tar.bz2 archive:

tar -xvf scancode-toolkit-3.1.1.tar.bz2

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted
directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

Note

--shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The Basic Scan options, i.e. -c, -l, -p, -e, -u, and -i are to be
decided, according to your requirements. If you do not need one specific type of information
(say, licenses), consider removing it, because the more things you scan for, longer it will take
for the scan to complete.

Note

You have to select these options explicitly, as they are not default anymore from
versions 3.x, unlike earlier versions having -clp as default.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip a file taking a lot of time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

./scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

How to Visualize Scan results

In this simple tutorial example, we import results from a basic scan performed on the samples
directory distributed by default with Scancode, and visualize the outputs through
Scancode Workbench.

Warning

This tutorial uses the 3.1.1 version of Scancode Toolkit, and Scancode Workbench 3.1.0 (This
beta version of ScanCode Workbench is compatible with scans from any ScanCode Toolkit develop
version/branch at or after v3.0.2). If you are using an older version of Scancode Toolkit, check
respective versions of this documentation. Also refer the Scancode Workbench
release highlights [https://github.com/nexB/scancode-workbench/releases/].

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up Scancode Workbench

According to the Install Building Requirements, we have to install Node.js 6.x or later.
Refer to Node.js install instructions [https://nodejs.org/en/download/package-manager/] here.

You can also run the following commands:

sudo apt-get install -y nodejs
sudo npm install npm@5.2.0 -g

After Node.js and npm is installed and get the Scancode Workbench 3.1.0 tarball from the
Workbench Release Page [https://github.com/nexB/scancode-workbench/releases/tag/v3.1.0]. Extract
the package and then launch Scancode Workbench:

./ScanCode-Workbench

This opens the Workbench.

Note

You can also build Scancode Toolkit and Scancode Workbench from source. Clone the repository,
don’t forget to checkout to the specific release using git checkout <release>, and follow
the build instructions. You’ll also have to create a Python 2.7 Virtual Environment, or use the
same venv-3.1.1 created here at How to Run a Scan.

Importing Data into Scancode Workbench

	Click on the File -> Import JSON File or Press Ctrl + I.

	Select the file from the pop-up window.

	Select a Name and Location (where you want it later) for the .sqlite output file.

Note

You can also import a .sqlite file you’ve saved in the past to load scan results. As it is much
faster, once you’ve imported the JSON file and a corresponding SQLite file has been created,
you shouldn’t repeat this. Instead, import the SQLite file next time you want to visualize the
same scan result.

Visualization

Views

Refer Scancode Workbench Views for more information on Visualization.

The dashboard has a general overview.

[image: ../../_images/workbench_dashboard.png]
There are 3 principal views (They appear in the same order in the GIFs):

	Chart Summary View,

	Table View,

	Components Summary View.

[image: ../../_images/views_sample.gif]

Filters

You can also click any file/directory on the file list located on the right, to filter the results
such that it only contains results from that File/Directory.

[image: ../../_images/filter_sample.gif]

Components

Refer Creating Conclusions for more information on Components.

In the table view,

	Apply filters by selecting Files/Directories

	Right Click on the Left Panel

	Select Edit Component

	A pop-up opens with fields, make necessary edits and Save.

	Go to the Component Summary View to see the Component.

[image: ../../_images/components_sample.gif]

How To Extract Archives

ScanCode Toolkit provides archive extraction. This command can be used before running a scan over
a codebase in order to ensure all archives are extracted. Archives found inside an extracted
archive are extracted recursively. Extraction is done in-place in a directory and named after the
archive with '-extract' appended.

[image: ../../_images/scancode-toolkit-extract.png]

Usage:

./extractcode [OPTIONS] <input>

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

How to specify Scancode Output Format

A basic overview of formatting Scancode Output is presented here.

More information on Scancode Output Formats.

JSON

If you want JSON output of ScanCode results, you can pass the --json argument to ScanCode.
The following commands will output scan results in a formatted json file:

	./scancode --json /path/to/output.json /path/to/target/dir

	./scancode --json-pp /path/to/output.json /path/to/target/dir

	./scancode --json-lines /path/to/output.json /path/to/target/dir

To compare the JSON output in different formats refer Comparing Different json Output Formats.

Print to stdout (Terminal)

If you want to format the output in JSON and print it at stdout, you can replace the JSON filename
with a “-“, like --json-pp - instead of --json-pp output.json.

The following command will output the scan results in JSON format to stdout (In the Terminal):

./scancode -clpieu --jsonlines - samples/

HTML

If you want HTML output of ScanCode results, you can pass the --html argument to ScanCode.
The following commands will output scan results in a formatted HTML page or simple web application:

	./scancode --html /path/to/output.html /path/to/target/dir

	./scancode --html-app /path/to/output.html /path/to/target/dir

For more details on the HTML output format refer --html FILE.

Warning

The --html-app option has been deprecated, use Scancode Workbench instead.

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.html:
[
 {% if results.license_copyright %}
 {% for location, data in results.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$./scancode -clpeui --custom-output sample.json --custom-template sample.html samples
Scanning files...
 [####################################] 46
Scanning done.

Now are results are saved in t.json and we can easily view them with head t.json:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

How to set what will be detected in Scan

ScanCode allows you to scan a codebase for license, copyright and other interesting information
that can be discovered in files. The following options are available for detection when using
ScanCode Toolkit:

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

Different Scans

The following examples will use the samples directory that is provided with the ScanCode
Toolkit code [https://github.com/nexB/scancode-toolkit/tree/master/samples]. All examples will
be saved in the JSON format, which can be loaded into Scancode Workbench for visualization. See
How to Visualize Scan results for more information. Another output format option is a
static html file. See Scancode Output Formats for more information.

Scan for all clues:

To scan for licenses, copyrights, urls, emails, package information, and file information

./scancode -clipeu --json output.json samples

Scan for license and copyright clues:

./scancode -cl --json-pp output.json samples

Scan for emails and URLs:

./scancode -eu --json-pp output.json samples

Scan for package information:

./scancode -p --json-pp output.json samples

Scan for file information:

./scancode -i --json-pp output.json samples

To see more example scans:

./scancode --examples

For more information, refer All Available Options.

How-To Guides

	How To Add a New License for Detection
	How to add a new license for detection?

	How to Add New License Rules for Enhanced Detection
	How to add a new license detection rule?

How To Add a New License for Detection

How to add a new license for detection?

To add new license, you first need to select a new and unique license key (mit and gpl-2.0 are
some of the existing license keys). All licenses are stored as plain text files in the
src/licensedcode/data/licenses directory using their key as part of the file names.

You need to create a pair of files:

	a file with the text of the license saved in a plain text file named key.LICENSE

	a small text data file (in YAML format) named key.yml that contains license information such as:

key: my-license
name: My License

The key name can contain only these symbols:

	lowercase letters from a to z,

	numbers from 0 to 9,and

	dash - and . period signs. No spaces.

Save these two files in the src/licensedcode/data/licenses/ directory.

Done!

See the src/licensedcode/data/licenses/ directory for examples.

How to Add New License Rules for Enhanced Detection

ScanCode relies on license rules to detect licenses. A rule is a simple text file containing a
license text or notice or mention. And a small YAML text file that tells ScanCode which licenses
to report when the text is detected.

See the FAQ for a high level description of How to Add New License Rules for Enhanced Detection.

How to add a new license detection rule?

A license detection rule is a pair of files:

	a plain text rule file that is typically a variant of a license text, notice or license mention.

	a small text data file (in YAML format) documenting which license(s) should be detected for the
rule text.

To add a new rule, you need to pick a unique base file name. As a convention, we like to include the
license key(s) that should be detected in that name to make it more descriptive. For example:
mit_and_gpl-2.0 is a good base name. Add a suffix to make it unique if there is already a rule
with this base name. Do not use spaces or special characters in that name.

Then create the rule file in the src/licensedcode/data/rules/ directory using this name, replacing
selected_base_name with the base name you selected:

selected_base_name.RULE

Save your rule text in this file.

Then create the YAML data file in the src/licensedcode/data/rules/ directory using this name:

selected_base_name.yml

For a simple mit and gpl-2.0 detection license keys detection, the content of this file can be
this YAML snippet:

licenses:
 - mit
 - gpl-2.0

Save these two files in the src/licensedcode/data/licenses/ directory and you are done!

See the src/licensedcode/data/rules/ directory for examples.

More (advanced) rules options:

	you can use a notes: text field to document this rule.

	if no license should be detected for your .RULE text, do not add a list of license keys,
just add a note.

	.RULE text can contain special text regions that can be ignored when scanning for licenses.
You can mark a template region in your rule text using {{double curly braces}} and up to five
words can vary and still match this rule. You must add this field in your .yml data file to mark
this rule as a template

template: yes

	By using a number after the opening braces, more than five words can be skipped.
With {{10 double curly braces }} ten words would be skipped.

	To mark a rule as detecting a choice of licenses, add this field in your .yml file:

license_choice: yes

See the #257 issue [https://github.com/nexB/scancode-toolkit/issues/257] and the related
#258 pull request [https://github.com/nexB/scancode-toolkit/pull/258] for an example:
this adds a new rule to detect a combination of MIT or GPL.

Command Line Interface Reference

	Synopsis
	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

	Getting Help from the Command Line
	All Documentation/Help Options

	Help text

	Command Examples Text

	Plugins Help Text

	--list-packages Option

	--print-options Option

	All Available Options
	All “Basic” Scan Options

	All Extractcode Options

	All “Core” Scan Options

	All Scan Output Options

	All “Output Control” Scan Options

	All “Pre-Scan” Options

	All “Post-Scan” Options

	How to Run a Scan
	Setting up a Virtual Environment

	Setting up Scancode Toolkit

	Looking into Files

	Performing Extraction

	Deciding Scan Options

	Running The Scan

	Other Important Documentation

	Basic Options
	All “Basic” Scan Options

	--generated Options

	--max-email Options

	--max-url Options

	--license-score Options

	--license-text Options

	--license-url-template Options

	--license-text-diagnostics Options

	Core Options
	All “Core” Scan Options

	Comparing Progress Message Options

	--timeout Option

	--reindex-licenses Option

	--from-json Option

	--max-in-memory Option

	Scancode Output Formats
	All Scan Output Options

	--json FILE

	--json-pp FILE

	--json-lines FILE

	Comparing Different json Output Formats

	--spdx-rdf FILE

	--spdx-tv FILE

	--html FILE

	--html-app FILE

	--csv FILE

	Custom Output Format

	Controlling Scancode Output and Filters
	All “Output Control” Scan Options

	--strip-root Vs. --full-root

	--ignore-author <pattern> Option

	--ignore-copyright-holder <pattern> Option

	--only-findings Plugin

	Pre-Scan Options
	All “Pre-Scan” Options

	--ignore Option

	--include Option

	--classify

	--facet Option

	Glob Pattern Matching

	What is a Facet?

	Post-Scan Options
	All “Post-Scan” Options

	--mark-source Option

	--consolidate Option

	--filter-clues Option

	--is-license-text Option

	--license-clarity-score Option

	--license-policy FILE Option

	--summary Option

	--summary-by-facet Option

	--summary-key-files Option

	--summary-with-details Option

Synopsis

ScanCode detects licenses, copyrights, package manifests and direct dependencies and more, both
in source code and binary files, by scanning the files. This page introduces you to the ScanCode
Toolkit Command Line Interface in the following sections:

	Quickstart

	Type of Options

	Output Formats

	Other Important Documentation

Quickstart

The basic usage is:

path/to/scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <SCAN INPUT>

To scan the samples directory, the command will be:

path/to/scancode -clpieu --json-pp path/to/output.json path/to/samples

Note

The <OUTPUT FORMAT OPTION(s)> includes both the output option and output file name.
For example in ./scancode -clpieu --json-pp output.json samples,
--json-pp output.json is <OUTPUT FORMAT OPTION(s)>.

Tip

On Windows use scancode instead of path/to/scancode.

Warning

There isn’t a “Default” output option in Versions 3.x onwards, you have to
specify <OUTPUT FORMAT OPTION(s)> explicitly.

Alternatively, instead of using path/to/scancode (the path from root of file system) we can
go into the scancode directory (like scancode-toolkit-3.1.1) and then use ./scancode.
The same applies for input and output options. To scan a folder samples inside ScanCode
directory, and output to a file output.json in the same directory, the command will be:

./scancode -clpieu --json-pp output.json samples

While a scan using absolute paths from the file system root will look like:

home/ayansm/software/scancode-toolkit-3.1.1/scancode -clpieu --json-pp home/ayansm/scan_scan_results/output.json home/ayansm/codebases/samples/

Throughout the documentation ./scancode --clpieu --json-pp output.json samples will be used
as am example when the terminal is at scancode-toolkit-3.1.1 and we are scanning the
default samples folder distributed with Scancode-Toolkit.

Scans the <SCAN INPUT> file or directory for license, origin and packages and saves results to
FILE(s) using one or more output format option. Error and progress are printed to stdout.

Type of Options

ScanCode Toolkit Command Line options can be divided into these major sections:

	All “Basic” Scan Options

	Extractcode Options

	All “Core” Scan Options

	Controlling Scancode Output and Filters

	Pre-Scan Options

	Post-Scan Options

Output Formats

The output file format is set by using the various output options. The default output format
is JSON, the entire file being in one line, without whitespace characters.

The following example scans will show you how to run a scan with each of the result formats. For
the scans, we will use the samples directory provided with the ScanCode Toolkit.

JSON file output

Scan the samples directory and save the scan to a JSON file::

./scancode -clpieu --json-pp output.json samples

A sample JSON output file structure will look like:

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 ...
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 ...
 ...
 ...
 {
 "path": "samples/zlib/iostream2/zstream_test.cpp",
 "type": "file",
 "name": "zstream_test.cpp",
 "base_name": "zstream_test",
 "extension": ".cpp",
 "size": 711,
 "date": "2019-02-12",
 ...
 ...
 ...
 "scan_errors": []
 }
]
}

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "licenses": [
 {
 "key": "mit-old-style",
 "score": 100.0,
 "name": "MIT Old Style",
 "short_name": "MIT Old Style",
 "category": "Permissive",
 "is_exception": false,
 "owner": "MIT",
 "homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style",
 "spdx_license_key": null,
 "spdx_url": "",
 "start_line": 9,
 "end_line": 15,
 "matched_rule": {
 "identifier": "mit-old-style_cmr-no_1.RULE",
 "license_expression": "mit-old-style",
 "licenses": [
 "mit-old-style"
],
 "is_license_text": true,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": false,
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
 "license_expressions": [
 "mit-old-style"
],
 "copyrights": [
 {
 "value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "value": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

Static HTML output

Scan the samples directory for licenses and copyrights and save the scan results to an HTML
file. When the scan is done, open samples.html in your web browser.

./scancode -clpieu --html output.html samples

[image: ../../_images/scancode-toolkit-static-html1.png]
[image: ../../_images/scancode-toolkit-static-html2.png]

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Getting Help from the Command Line

ScanCode-Toolkit Command Line Interface can help you to search for specific options or use cases
from the command line itself. These are two options are --help and --examples, and are
very helpful if you need a quick glance of the options or use cases. Or it can be useful when you
can’t access, the more elaborate online documentation.

All Documentation/Help Options

	-h, --help

	Show the Help text and exit.

	--examples

	Show the Command Examples Text and exit.

	--about

	Show information about ScanCode and licensing
and exit.

	--version

	Show the version and exit.

	--list-packages

	Show the list of supported package types and exit.

	--plugins

	Show the list of available ScanCode plugins and exit.

	--print-options

	Show the list of selected options and exit.

Help text

The Scancode-Toolkit Command Line Interface has a Help option displaying all the options. It also
displays basic usage, and some simple examples. The command line option for this is --help.

Tip

You can also use the shorter -h option, which does the same.

For Linux based systems the full command is:

$./scancode --help

And for windows, it will be like:

$ scancode --help

Note

Make sure you are in the Scancode Root Directory before carrying out this command. After
extracting the .zip or .tar.bz file, the folder for Scancode-Toolkit version 3.1.1
will be named like “scancode-toolkit-3.1.1”.

The Following Help Text is displayed, i.e. This is the help text for Scancode Version 3.1.1

Usage: scancode [OPTIONS] <OUTPUT FORMAT OPTION(s)> <input>...

scan the <input> file or directory for license, origin and packages
and save results to FILE(s) using one or more output format option.

Error and progress are printed to stderr.

Options:

primary scans:
 -l, --license Scan <input> for licenses.
 -p, --package Scan <input> for package manifests and packages.
 -c, --copyright Scan <input> for copyrights.

other scans:
 -i, --info Scan <input> for file information (size, checksums, etc).
 --generated Classify automatically generated code files with a flag.
 -e, --email Scan <input> for emails.
 -u, --url Scan <input> for urls.

scan options:
 --license-score INTEGER Do not return license matches with a
 score lower than this score. A number
 between 0 and 100. [default: 0]
 --license-text Include the detected licenses matched
 text.
 --license-text-diagnostics In the matched license text, include
 diagnostic highlights surrounding with
 square brackets [] words that are not
 matched.
 --license-url-template TEXT Set the template URL used for the license
 reference URLs. Curly braces ({}) are
 replaced by the license key. [default: h
 ttps://enterprise.dejacode.com/urn/urn:dj
 e:license:{}]
 --max-email INT Report only up to INT emails found in a
 file. Use 0 for no limit. [default: 50]
 --max-url INT Report only up to INT urls found in a
 file. Use 0 for no limit. [default: 50]

output formats:
 --json FILE Write scan output as compact JSON to FILE.
 --json-pp FILE Write scan output as pretty-printed JSON to
 FILE.
 --json-lines FILE Write scan output as JSON Lines to FILE.
 --csv FILE Write scan output as CSV to FILE.
 --html FILE Write scan output as HTML to FILE.
 --custom-output FILE Write scan output to FILE formatted with the
 custom Jinja template file.
 --custom-template FILE Use this Jinja template FILE as a custom
 template.
 --spdx-rdf FILE Write scan output as SPDX RDF to FILE.
 --spdx-tv FILE Write scan output as SPDX Tag/Value to FILE.
 --html-app FILE (DEPRECATED: use the ScanCode Workbench app
 instead) Write scan output as a mini HTML
 application to FILE.

output filters:
 --ignore-author <pattern> Ignore a file (and all its findings)
 if an author contains a match to the
 <pattern> regular expression. Note
 that this will ignore a file even if
 it has other findings such as a
 license or errors.
 --ignore-copyright-holder <pattern>
 Ignore a file (and all its findings)
 if a copyright holder contains a match
 to the <pattern> regular expression.
 Note that this will ignore a file even
 if it has other scanned data such as a
 license or errors.
 --only-findings Only return files or directories with
 findings for the requested scans.
 Files and directories without findings
 are omitted (file information is not
 treated as findings).

output control:
 --full-root Report full, absolute paths.
 --strip-root Strip the root directory segment of all paths. The
 default is to always include the last directory segment
 of the scanned path such that all paths have a common
 root directory.

pre-scan:
 --ignore <pattern> Ignore files matching <pattern>.
 --include <pattern> Include files matching <pattern>.
 --classify Classify files with flags telling if the
 file is a legal, or readme or test file,
 etc.
 --facet <facet>=<pattern> Add the <facet> to files with a path
 matching <pattern>.

post-scan:
 --consolidate Group resources by Packages or license and
 copyright holder and return those groupings
 as a list of consolidated packages and a list
 of consolidated components. This requires the
 scan to have/be run with the copyright,
 license, and package options active
 --filter-clues Filter redundant duplicated clues already
 contained in detected license and copyright
 texts and notices.
 --is-license-text Set the "is_license_text" flag to true for
 files that contain mostly license texts and
 notices (e.g over 90% of the content).
 [EXPERIMENTAL]
 --license-clarity-score Compute a summary license clarity score at
 the codebase level.
 --license-policy FILE Load a License Policy file and apply it to
 the scan at the Resource level.
 --mark-source Set the "is_source" to true for directories
 that contain over 90% of source files as
 children and descendants. Count the number of
 source files in a directory as a new
 source_file_counts attribute
 --summary Summarize license, copyright and other scans
 at the codebase level.
 --summary-by-facet Summarize license, copyright and other scans
 and group the results by facet.
 --summary-key-files Summarize license, copyright and other scans
 for key, top-level files. Key files are top-
 level codebase files such as COPYING, README
 and package manifests as reported by the
 --classify option "is_legal", "is_readme",
 "is_manifest" and "is_top_level" flags.
 --summary-with-details Summarize license, copyright and other scans
 at the codebase level, keeping intermediate
 details at the file and directory level.

core:
 --timeout <secs> Stop an unfinished file scan after a timeout
 in seconds. [default: 120 seconds]
 -n, --processes INT Set the number of parallel processes to use.
 Disable parallel processing if 0. Also
 disable threading if -1. [default: 1]
 --quiet Do not print summary or progress.
 --verbose Print progress as file-by-file path instead
 of a progress bar. Print verbose scan
 counters.
 --from-json Load codebase from an existing JSON scan
 --max-in-memory INTEGER Maximum number of files and directories scan
 details kept in memory during a scan.
 Additional files and directories scan details
 above this number are cached on-disk rather
 than in memory. Use 0 to use unlimited memory
 and disable on-disk caching. Use -1 to use
 only on-disk caching. [default: 10000]

miscellaneous:
 --reindex-licenses Check the license index cache and reindex if
 needed and exit.

documentation:
 -h, --help Show this message and exit.
 --about Show information about ScanCode and licensing and
 exit.
 --version Show the version and exit.
 --examples Show command examples and exit.
 --list-packages Show the list of supported package types and exit.
 --plugins Show the list of available ScanCode plugins and exit.
 --print-options Show the list of selected options and exit.

Examples (use --examples for more):

Scan the 'samples' directory for licenses and copyrights.
Save scan results to the 'scancode_result.json' JSON file:

 scancode --license --copyright --json-pp scancode_result.json
 samples

Scan the 'samples' directory for licenses and package manifests. Print scan
results on screen as pretty-formatted JSON (using the special '-' FILE to print
to on screen/to stdout):

 scancode --json-pp - --license --package samples

Note: when you run scancode, a progress bar is displayed with a
counter of the number of files processed. Use --verbose to display
file-by-file progress.

Command Examples Text

The Scancode-Toolkit Command Line Interface has an --examples option which displays some basic
examples (more than the basic synopsis in --help). These examples include the following aspects
of code scanning:

	Scanning Single File/Directory

	Output Scan results to stdout (as JSON) or HTML/JSON file

	Scanning for only Copyrights/Licenses

	Ignoring Files

	Using GLOB Patterns to Scan Multiple Files

	Using Verbose Mode

The command line option for displaying these basic examples is --examples.

For Linux based systems the full command is:

$./scancode --examples

And for windows, it will be like:

$ scancode --examples

The Following Text is displayed, i.e. This is the examples for Scancode Version 3.1.1

Scancode command lines examples:

(Note for Windows: use '\' back slash instead of '/' forward slash for paths.)

Scan a single file for copyrights. Print scan results to stdout as pretty JSON:

 scancode --copyright samples/zlib/zlib.h --json-pp -

Scan a single file for licenses, print verbose progress to stderr as each
file is scanned. Save scan to a JSON file:

 scancode --license --verbose samples/zlib/zlib.h --json licenses.json

Scan a directory explicitly for licenses and copyrights. Redirect JSON scan
results to a file:

 scancode --license --copyright samples/zlib/ --json - > scan.json

Scan a directory while ignoring a single file. Scan for license, copyright and
package manifests. Use four parallel processes.
Print scan results to stdout as pretty formatted JSON.

 scancode -lc --package --ignore README --processes 4 --json-pp - samples/

Scan a directory while ignoring all files with .txt extension.
Print scan results to stdout as pretty formatted JSON.
It is recommended to use quotes around glob patterns to prevent pattern
expansion by the shell:

 scancode --json-pp - --ignore "*.txt" samples/

Special characters supported in GLOB pattern:
- * matches everything
- ? matches any single character
- [seq] matches any character in seq
- [!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets.
For example, '[?]' matches the character '?'.
For details on GLOB patterns see https://en.wikipedia.org/wiki/Glob_(programming).

Note: Glob patterns cannot be applied to path as strings.
For example, this will not ignore "samples/JGroups/licenses".

 scancode --json - --ignore "samples*licenses" samples/

Scan a directory while ignoring multiple files (or glob patterns).
Print the scan results to stdout as JSON:

 scancode --json - --ignore README --ignore "*.txt" samples/

Scan a directory for licenses and copyrights. Save scan results to an
HTML file:

 scancode --license --copyright --html scancode_result.html samples/zlib

To extract archives, see the 'extractcode' command instead.

Plugins Help Text

The command line option for displaying all the plugins is:

	--plugins

For Linux based systems the full command is:

$./scancode --plugins

And for windows, it will be like:

$ scancode --plugins

Note

Plugins that are shown by using --plugins include the following:

	Post-Scan Plugins

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

The Following Text is displayed, i.e. This is the available plugins for Scancode Version 3.1.1

--
Plugin: scancode_output:csv class: formattedcode.output_csv:CsvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: csv: --csv
 help: Write scan output as CSV to FILE.
 doc: None

--
Plugin: scancode_output:html class: formattedcode.output_html:HtmlOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html: --html
 help: Write scan output as HTML to FILE.
 doc: None

--
Plugin: scancode_output:html-app class: formattedcode.output_html:HtmlAppOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: html_app: --html-app
 help: (DEPRECATED: use the ScanCode Workbench app instead) Write scan output as a mini HTML application to FILE.
 doc:
 Write scan output as a mini HTML application.

--
Plugin: scancode_output:json class: formattedcode.output_json:JsonCompactOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json: --json
 help: Write scan output as compact JSON to FILE.
 doc: None

--
Plugin: scancode_output:json-pp class: formattedcode.output_json:JsonPrettyOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_pp: --json-pp
 help: Write scan output as pretty-printed JSON to FILE.
 doc: None

--
Plugin: scancode_output:jsonlines class: formattedcode.output_jsonlines:JsonLinesOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: output_json_lines: --json-lines
 help: Write scan output as JSON Lines to FILE.
 doc: None

--
Plugin: scancode_output:spdx-rdf class: formattedcode.output_spdx:SpdxRdfOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_rdf: --spdx-rdf
 help: Write scan output as SPDX RDF to FILE.
 doc: None

--
Plugin: scancode_output:spdx-tv class: formattedcode.output_spdx:SpdxTvOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: spdx_tv: --spdx-tv
 help: Write scan output as SPDX Tag/Value to FILE.
 doc: None

--
Plugin: scancode_output:template class: formattedcode.output_html:CustomTemplateOutput
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output formats, name: custom_output: --custom-output
 help: Write scan output to FILE formatted with the custom Jinja template file.
 help_group: output formats, name: custom_template: --custom-template
 help: Use this Jinja template FILE as a custom template.
 doc: None

--
Plugin: scancode_output_filter:ignore-copyrights class: cluecode.plugin_ignore_copyrights:IgnoreCopyrights
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: ignore_copyright_holder: --ignore-copyright-holder
 help: Ignore a file (and all its findings) if a copyright holder contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other scanned data such as a license or errors.
 help_group: output filters, name: ignore_author: --ignore-author
 help: Ignore a file (and all its findings) if an author contains a match to the <pattern> regular expression. Note that this will ignore a file even if it has other findings such as a license or errors.
 doc:
 Filter findings that match given copyright holder or author patterns.
 Has no effect unless the --copyright scan is requested.

--
Plugin: scancode_output_filter:only-findings class: scancode.plugin_only_findings:OnlyFindings
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: output filters, name: only_findings: --only-findings
 help: Only return files or directories with findings for the requested scans. Files and directories without findings are omitted (file information is not treated as findings).
 doc:
 Filter files or directories without scan findings for the requested scans.

--
Plugin: scancode_post_scan:classify-package class: summarycode.classify:PackageTopAndKeyFilesTagger
 codebase_attributes:
 resource_attributes:
 sort_order: 0
 required_plugins:
 options:
 doc:
 Tag resources as key or top level based on Package-type specific settings.

--
Plugin: scancode_post_scan:consolidate class: scancode.plugin_consolidate:Consolidator
 codebase_attributes: consolidated_components, consolidated_packages
 resource_attributes: consolidated_to
 sort_order: 8
 required_plugins:
 options:
 help_group: post-scan, name: consolidate: --consolidate
 help: Group resources by Packages or license and copyright holder and return those groupings as a list of consolidated packages and a list of consolidated components. This requires the scan to have/be run with the copyright, license, and package options active
 doc:
 A ScanCode post-scan plugin to return consolidated components and consolidated
 packages for different types of codebase summarization.

 A consolidated component is a group of Resources that have the same origin.
 Currently, consolidated components are created by grouping Resources that have
 the same license expression and copyright holders and the files that contain
 this license expression and copyright holders combination make up 75% or more of
 the files in the directory where they are found.

 A consolidated package is a detected package in the scanned codebase that has
 been enhanced with data about other licenses and holders found within it.

 If a Resource is part of a consolidated component or consolidated package, then
 the identifier of the consolidated component or consolidated package it is part
 of is in the Resource's ``consolidated_to`` field.

--
Plugin: scancode_post_scan:filter-clues class: cluecode.plugin_filter_clues:RedundantCluesFilter
 codebase_attributes:
 resource_attributes:
 sort_order: 1
 required_plugins:
 options:
 help_group: post-scan, name: filter_clues: --filter-clues
 help: Filter redundant duplicated clues already contained in detected license and copyright texts and notices.
 doc:
 Filter redundant clues (copyrights, authors, emails, and urls) that are already
 contained in another more important scan result.

--
Plugin: scancode_post_scan:is-license-text class: licensedcode.plugin_license_text:IsLicenseText
 codebase_attributes:
 resource_attributes: is_license_text
 sort_order: 80
 required_plugins:
 options:
 help_group: post-scan, name: is_license_text: --is-license-text
 help: Set the "is_license_text" flag to true for files that contain mostly license texts and notices (e.g over 90% of the content). [EXPERIMENTAL]
 doc:
 Set the "is_license_text" flag to true for at the file level for text files
 that contain mostly (as 90% of their size) license texts or notices.
 Has no effect unless --license, --license-text and --info scan data
 are available.

--
Plugin: scancode_post_scan:license-clarity-score class: summarycode.score:LicenseClarityScore
 codebase_attributes: license_clarity_score
 resource_attributes:
 sort_order: 110
 required_plugins:
 options:
 help_group: post-scan, name: license_clarity_score: --license-clarity-score
 help: Compute a summary license clarity score at the codebase level.
 doc:
 Compute a License clarity score at the codebase level.

--
Plugin: scancode_post_scan:license-policy class: licensedcode.plugin_license_policy:LicensePolicy
 codebase_attributes:
 resource_attributes: license_policy
 sort_order: 9
 required_plugins:
 options:
 help_group: post-scan, name: license_policy: --license-policy
 help: Load a License Policy file and apply it to the scan at the Resource level.
 doc:
 Add the "license_policy" attribute to a resouce if it contains a
 detected license key that is found in the license_policy.yml file

--
Plugin: scancode_post_scan:mark-source class: scancode.plugin_mark_source:MarkSource
 codebase_attributes:
 resource_attributes: source_count
 sort_order: 8
 required_plugins:
 options:
 help_group: post-scan, name: mark_source: --mark-source
 help: Set the "is_source" to true for directories that contain over 90% of source files as children and descendants. Count the number of source files in a directory as a new source_file_counts attribute
 doc:
 Set the "is_source" flag to true for directories that contain
 over 90% of source files as direct children.
 Has no effect unless the --info scan is requested.

--
Plugin: scancode_post_scan:summary class: summarycode.summarizer:ScanSummary
 codebase_attributes: summary
 resource_attributes:
 sort_order: 10
 required_plugins:
 options:
 help_group: post-scan, name: summary: --summary
 help: Summarize license, copyright and other scans at the codebase level.
 doc:
 Summarize a scan at the codebase level.

--
Plugin: scancode_post_scan:summary-by-facet class: summarycode.summarizer:ScanByFacetSummary
 codebase_attributes: summary_by_facet
 resource_attributes:
 sort_order: 200
 required_plugins:
 options:
 help_group: post-scan, name: summary_by_facet: --summary-by-facet
 help: Summarize license, copyright and other scans and group the results by facet.
 doc:
 Summarize a scan at the codebase level groupping by facets.

--
Plugin: scancode_post_scan:summary-keeping-details class: summarycode.summarizer:ScanSummaryWithDetails
 codebase_attributes: summary
 resource_attributes: summary
 sort_order: 100
 required_plugins:
 options:
 help_group: post-scan, name: summary_with_details: --summary-with-details
 help: Summarize license, copyright and other scans at the codebase level, keeping intermediate details at the file and directory level.
 doc:
 Summarize a scan at the codebase level and keep file and directory details.

--
Plugin: scancode_post_scan:summary-key-files class: summarycode.summarizer:ScanKeyFilesSummary
 codebase_attributes: summary_of_key_files
 resource_attributes:
 sort_order: 150
 required_plugins:
 options:
 help_group: post-scan, name: summary_key_files: --summary-key-files
 help: Summarize license, copyright and other scans for key, top-level files. Key files are top-level codebase files such as COPYING, README and package manifests as reported by the --classify option "is_legal", "is_readme", "is_manifest" and "is_top_level" flags.
 doc:
 Summarize a scan at the codebase level for only key files.

--
Plugin: scancode_pre_scan:classify class: summarycode.classify:FileClassifier
 codebase_attributes:
 resource_attributes: is_legal, is_manifest, is_readme, is_top_level, is_key_file
 sort_order: 50
 required_plugins:
 options:
 help_group: pre-scan, name: classify: --classify
 help: Classify files with flags telling if the file is a legal, or readme or test file, etc.
 doc:
 Classify a file such as a COPYING file or a package manifest with a flag.

--
Plugin: scancode_pre_scan:facet class: summarycode.facet:AddFacet
 codebase_attributes:
 resource_attributes: facets
 sort_order: 20
 required_plugins:
 options:
 help_group: pre-scan, name: facet: --facet
 help: Add the <facet> to files with a path matching <pattern>.
 doc:
 Assign one or more "facet" to each file (and NOT to directories). Facets are
 a way to qualify that some part of the scanned code may be core code vs.
 test vs. data, etc.

--
Plugin: scancode_pre_scan:ignore class: scancode.plugin_ignore:ProcessIgnore
 codebase_attributes:
 resource_attributes:
 sort_order: 100
 required_plugins:
 options:
 help_group: pre-scan, name: ignore: --ignore
 help: Ignore files matching <pattern>.
 help_group: pre-scan, name: include: --include
 help: Include files matching <pattern>.
 doc:
 Include or ignore files matching patterns.

--
Plugin: scancode_scan:copyrights class: cluecode.plugin_copyright:CopyrightScanner
 codebase_attributes:
 resource_attributes: copyrights, holders, authors
 sort_order: 4
 required_plugins:
 options:
 help_group: primary scans, name: copyright: -c, --copyright
 help: Scan <input> for copyrights.
 doc:
 Scan a Resource for copyrights.

--
Plugin: scancode_scan:emails class: cluecode.plugin_email:EmailScanner
 codebase_attributes:
 resource_attributes: emails
 sort_order: 8
 required_plugins:
 options:
 help_group: other scans, name: email: -e, --email
 help: Scan <input> for emails.
 help_group: scan options, name: max_email: --max-email
 help: Report only up to INT emails found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for emails.

--
Plugin: scancode_scan:generated class: summarycode.generated:GeneratedCodeDetector
 codebase_attributes:
 resource_attributes: is_generated
 sort_order: 50
 required_plugins:
 options:
 help_group: other scans, name: generated: --generated
 help: Classify automatically generated code files with a flag.
 doc:
 Tag a file as generated.

--
Plugin: scancode_scan:info class: scancode.plugin_info:InfoScanner
 codebase_attributes:
 resource_attributes: date, sha1, md5, mime_type, file_type, programming_language, is_binary, is_text, is_archive, is_media, is_source, is_script
 sort_order: 0
 required_plugins:
 options:
 help_group: other scans, name: info: -i, --info
 help: Scan <input> for file information (size, checksums, etc).
 doc:
 Scan a file Resource for miscellaneous information such as mime/filetype and
 basic checksums.

--
Plugin: scancode_scan:licenses class: licensedcode.plugin_license:LicenseScanner
 codebase_attributes:
 resource_attributes: licenses, license_expressions
 sort_order: 2
 required_plugins:
 options:
 help_group: primary scans, name: license: -l, --license
 help: Scan <input> for licenses.
 help_group: scan options, name: license_score: --license-score
 help: Do not return license matches with a score lower than this score. A number between 0 and 100.
 help_group: scan options, name: license_text: --license-text
 help: Include the detected licenses matched text.
 help_group: scan options, name: license_text_diagnostics: --license-text-diagnostics
 help: In the matched license text, include diagnostic highlights surrounding with square brackets [] words that are not matched.
 help_group: scan options, name: license_url_template: --license-url-template
 help: Set the template URL used for the license reference URLs. Curly braces ({}) are replaced by the license key.
 help_group: scan options, name: license_diag: --license-diag
 help: (DEPRECATED: this is always included by default now). Include diagnostic information in license scan results.
 help_group: miscellaneous, name: reindex_licenses: --reindex-licenses
 help: Check the license index cache and reindex if needed and exit.
 doc:
 Scan a Resource for licenses.

--
Plugin: scancode_scan:packages class: packagedcode.plugin_package:PackageScanner
 codebase_attributes:
 resource_attributes: packages
 sort_order: 6
 required_plugins: scan:licenses
 options:
 help_group: primary scans, name: package: -p, --package
 help: Scan <input> for package manifests and packages.
 help_group: documentation, name: list_packages: --list-packages
 help: Show the list of supported package types and exit.
 doc:
 Scan a Resource for Package manifests and report these as "packages" at the
 right file or directory level.

--
Plugin: scancode_scan:urls class: cluecode.plugin_url:UrlScanner
 codebase_attributes:
 resource_attributes: urls
 sort_order: 10
 required_plugins:
 options:
 help_group: other scans, name: url: -u, --url
 help: Scan <input> for urls.
 help_group: scan options, name: max_url: --max-url
 help: Report only up to INT urls found in a file. Use 0 for no limit.
 doc:
 Scan a Resource for URLs.

--list-packages Option

This shows all the types of packages that can be scanned using Scancode.
These are located in packagedcode i.e. Code used to parse various package formats.

--print-options Option

This option prints the options selected for one specific scan command.

If we run this command:

./scancode -clpieu --json-pp sample.json samples --classify --summary --summary-with-details --print-options

The output will be:

Options:
 classify: True
 copyright: True
 email: True
 info: True
 license: True
 list_packages: None
 output_json_pp: <unopened file 'sample.json' wb>
 package: True
 reindex_licenses: None
 summary: True
 summary_with_details: True
 url: True

All Available Options

This section contains an exhaustive list of all Scancode options, arranged in various sections.
The sections are as follows:

	Basic Scan Options

	Core Scan Options

	Output Formats

	Controlling Output and Filters

	Pre-Scan Options

	Post-Scan Options

There’s also another section for extractcode options.

The order of the sections and all their options is the same as in the :ref:’cli_help_text’,
available in the command line.

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--reindex-licenses

	Force a check and possible reindexing of the
cached license index.

	--from-json

	Load codebase from an existing JSON scan

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--csv FILE

	Write scan output as CSV to FILE.

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	Write scan output as a mini HTML
application to FILE.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--summary-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--summary-by-facet

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of - --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.

Sub-Option of - --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--is-license-text

	Set the “is_license_text” flag to true for
files that contain mostly license texts and
notices (e.g. over 90% of the content).

Sub-Option of - --info and --license-text.

Warning

--is-license-text is an experimental Option.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of - --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize license, copyright and other scans
at the codebase level.

Sub-Options:

	--summary-by-facet

	--summary-key-files

	--summary-with-details

	--summary-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of - --summary and --facet.

	--summary-key-files

	Summarize license, copyright and other scans
for key, top-level files. Key files are top-
level codebase files such as COPYING, README
and package manifests as reported by the
--classify option “is_legal”, “is_readme”,
“is_manifest” and “is_top_level” flags.

Sub-Option of - --classify and --summary.

	--summary-with-details

	Summarize license, copyright and other scans
at the codebase level, keeping intermediate
details at the file and directory level.

How to Run a Scan

In this simple tutorial example, we perform a basic scan on the samples directory distributed
by default with Scancode.

Warning

This tutorial is for Linux based systems presently. Additional Help for Windows/MacOS will be
added.

Setting up a Virtual Environment

Scancode Toolkit 3.1.1 and Workbench 3.1.0 is not compatible with python 3.x so we will create a
virtual environment [https://docs.python-guide.org/dev/virtualenvs/] using the Virtualenv
tool with a python 2.7 interpreter.

The following commands set up and activate the Virtual Environment venv-scan3.1.1:

virtualenv -p /usr/bin/python2.7 venv-scan3.1.1
source venv-scan3.1.1/bin/activate

Setting up Scancode Toolkit

Get the Scancode Toolkit Version 3.1.1 tarball or .zip archive from the
Toolkit GitHub Release [https://github.com/nexB/scancode-toolkit/releases/tag/v3.1.1] Page under
assets options. Download and extract the Archive from command line:

For .zip archive:

unzip scancode-toolkit-3.1.1.zip

For .tar.bz2 archive:

tar -xvf scancode-toolkit-3.1.1.tar.bz2

Or Right Click and select “Extract Here”.

Check whether the Prerequisites are installed. Open a terminal in the extracted
directory and run:

./scancode --help

This will configure ScanCode and display the command line Help text.

Looking into Files

As mentioned previously, we are going to perform the scan on the samples directory distributed
by default with Scancode Toolkit. Here’s the directory structure and respective files:

[image: ../../_images/files_sample.png]
We notice here that the sample files contain a package zlib.tar.gz. So we have to extract the
archive before running the scan, to also scan the files inside this package.

Performing Extraction

To extract the packages inside samples directory:

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

Note

--shallow option can be used to recursively extract packages.

Deciding Scan Options

These are some common scan options you should consider using before you start the actual scan,
according to your requirements.

	The Basic Scan options, i.e. -c, -l, -p, -e, -u, and -i are to be
decided, according to your requirements. If you do not need one specific type of information
(say, licenses), consider removing it, because the more things you scan for, longer it will take
for the scan to complete.

Note

You have to select these options explicitly, as they are not default anymore from
versions 3.x, unlike earlier versions having -clp as default.

	--license-score INTEGER is to be set if license matching accuracy is desired (Default is 0,
and increasing this means a more accurate match). Also, using --license-text includes the
matched text to the result.

	-n INTEGER option can be used to speed up the scan using multiple parallel processes.

	--timeout FLOAT option can be used to skip a file taking a lot of time to scan.

	--ignore <pattern> can be used to skip certain group of files.

	<OUTPUT FORMAT OPTION(s)> is also a very important decision when you want to use the output
for specific tasks/have requirements. Here we are using json as ScanCode Workbench imports
json files only.

For the complete list of options, refer All Available Options.

Running The Scan

Now, run the scan with the options decided:

./scancode -clpeui -n 2 --ignore "*.java" --json-pp sample.json samples

A Progress report is shown:

Setup plugins...
Collect file inventory...
Scan files for: info, licenses, copyrights, packages, emails, urls with 2 process(es)...
[####################] 29
Scanning done.
Summary: info, licenses, copyrights, packages, emails, urls with 2 process(es)
Errors count: 0
Scan Speed: 1.09 files/sec. 40.67 KB/sec.
Initial counts: 49 resource(s): 36 file(s) and 13 directorie(s)
Final counts: 42 resource(s): 29 file(s) and 13 directorie(s) for 1.06 MB
Timings:
 scan_start: 2019-09-24T203514.573671
 scan_end: 2019-09-24T203545.649805
 setup_scan:licenses: 4.30s
 setup: 4.30s
 scan: 26.62s
 total: 31.14s
Removing temporary files...done.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

Basic Options

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

--generated Options

The --generated option classifies automatically generated code files with a flag.

An example of using --generated in a scan:

./scancode -clpieu --json-pp output.json samples --generated

In the results, for each file the following attribute is added with it’s corresponding
true/false value

"is_generated": true

In the samples folder, the following files have a true value for their is_generated attribute:

"samples/zlib/dotzlib/LICENSE_1_0.txt"
"samples/JGroups/licenses/apache-2.0.txt"

--max-email Options

Dependency

The option --max-email is a sub-option of and requires the option --email.

If in the files that are scanned, in individual files, there are a lot of emails (i.e lists) which
are unnecessary and clutter the scan results, --max-email option can be used to report emails
only up to a limit in individual files.

Some important INTEGER values of the --max-email INTEGER option:

	0 - No limit, include all emails.

	50 - Default.

An example usage:

./scancode -clpieu --json-pp output.json samples --max-email 5

This only reports 5 email addresses per file and ignores the rest.

--max-url Options

Dependency

The option --max-url is a sub-option of and requires the option --url.

If in the files that are scanned, in individual files, there are a lot of links to other websites
(i.e url lists) which are unnecessary and clutter the scan results, --max-url option can be
used to report urls only up to a limit in individual files.

Some important INTEGER values of the --max-url INTEGER option:

	0 - No limit, include all urls.

	50 - Default.

An example usage:

./scancode -clpieu --json-pp output.json samples --max-url 10

This only reports 10 urls per file and ignores the rest.

--license-score Options

Dependency

The option --license-score is a sub-option of and requires the option --license.

License matching strictness, i.e. How closely matched licenses are detected in a scan, can be
modified by using this --license-score option.

Some important INTEGER values of the --license-score INTEGER option:

	0 - Default and Lowest Value, All matches are reported.

	100 - Highest Value, Only licenses with a much better match are reported

Here, a bigger number means a better match, i.e. Setting a higher license score translates to a
higher threshold for matching licenses (with equal or less number of license matches).

An example usage:

./scancode -clpieu --json-pp output.json samples --license-score 70

Here’s the license results on setting the integer value to 100, Vs. the default value 0. This is
visualized using ScanCode workbench in the License Info Dashboard.

License scan results of Samples Directory.

	
[image: ../../_images/core_lic_score_0.png]
License Score 0 (Default).

	
[image: ../../_images/core_lic_score_100.png]
License Score 100.

--license-text Options

Dependency

The option --license-text is a sub-option of and requires the option --license.

Sub-Option

The option --license-text-diagnostics and --is-license-text are sub-options of
--license-text. --is-license-text is a Post-Scan Option.

With the --license-text option, the scan results attribute “matched text” includes the matched text
for the detected license.

An example Scan:

./scancode -cplieu --json-pp output.json samples --license-text

An example matched text included in the results is as follows:

"matched_text":
 " This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu"

	The file in which this license was detected: samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h

	License name: “ZLIB License”

--license-url-template Options

Dependency

The option --license-url-template is a sub-option of and requires the option
--license.

The --license-url-template option sets the template URL used for the license reference URLs.

The default template URL is : [https://enterprise.dejacode.com/urn/urn:dje:license:{}]
In a template URL, curly braces ({}) are replaced by the license key.

So, by default the license reference URL points to the dejacode page for that license.

A scan example using the --license-url-template TEXT option

./scancode -clpieu --json-pp output.json samples --license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}.yml

In a normal scan, reference url for “ZLIB License” is as follows:

"reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:zlib",

After using the option in the following manner:

``--license-url-template https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/{}``

the reference URL changes to this zlib.yml file [https://github.com/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/licenses/zlib.yml]:

"reference_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses/zlib.yml",

The reference URL changes for all detected licenses in the scan, across the scan result file.

--license-text-diagnostics Options

Dependency

The option --license-text-diagnostics is a sub-option of and requires the options
--license and --license-text.

In the matched license text, include diagnostic highlights surrounding with square brackets []
words that are not matched.

In a normal scan, whole lines of text are included in the matched license text, including parts
that are possibly unmatched.

An example Scan:

./scancode -cplieu --json-pp output.json samples --license-text --license-text-diagnostics

Running a scan on the samples directory with --license-text --license-text-diagnostics options,
causes the following difference in the scan result of the file
samples/JGroups/licenses/bouncycastle.txt.

Without Diagnostics:

"matched_text":
"License Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
(http://www.bouncycastle.org) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction

With Diagnostics on:

"matched_text":
"License [Copyright] ([c]) [2000] - [2006] [The] [Legion] [Of] [The] [Bouncy] [Castle]
([http]://[www].[bouncycastle].[org]) Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the \"Software\"),
to deal in the Software without restriction,

Core Options

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--reindex-licenses

	Force a check and possible reindexing of the
cached license index.

	--from-json

	Load codebase from an existing JSON scan

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

Comparing Progress Message Options

Default Progress Message:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
[####################] 43
Scanning done.
Scan statistics: 43 files scanned in 33s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.4 files per sec.
Scanning time: 30s.
Indexing time: 2s.
Saving results.

Progress Message with ``–verbose``:

Scanning files for: infos, licenses, copyrights, packages, emails, urls with 1 process(es)...
Building license detection index...Done.
Scanning files...
Scanned: screenshot.png
Scanned: README
...
Scanned: zlib/dotzlib/ChecksumImpl.cs
Scanned: zlib/dotzlib/readme.txt
Scanned: zlib/gcc_gvmat64/gvmat64.S
Scanned: zlib/ada/zlib.ads
Scanned: zlib/infback9/infback9.c
Scanned: zlib/infback9/infback9.h
Scanned: arch/zlib.tar.gz
Scanning done.
Scan statistics: 43 files scanned in 29s.
Scan options: infos, licenses, copyrights, packages, emails, urls with 1 process(es).
Scanning speed: 1.58 files per sec.
Scanning time: 27s.
Indexing time: 2s.
Saving results.

So, with --verbose enables, progress messages for individual files are shown.

With the ``–quiet`` option enabled, nothing is printed on the Command Line.

--timeout Option

This option sets scan timeout for each file (and not the entire scan). If some file scan
exceeds the specified timeout, that file isn’t scanned anymore and the next file scanning
starts. This helps avoiding very large/long files, and saves time.

Also the number (timeout in seconds) to be followed by this option can be a
floating point number, i.e. 1.5467.

--reindex-licenses Option

ScanCode maintains a license index to search for and detect licenses. When Scancode is
configured for the first time, a license index is built and used in every scan thereafter.

This --reindex-licenses option rebuilds the license index. Running a scan with this option
displays the following message to the terminal in addition to what it normally shows:

Checking and rebuilding the license index...

--from-json Option

If you want to input scan results from a .json file, and run a scan again on those same files,
with some other options/output format, you can do so using the --from-json option.

An example scan command using --from-json:

./scancode --from-json sample.json --json-pp sample_2.json --classify

This inputs the scan results from sample.json, runs the post-scan plugin --classify and
outputs the results for this scan to sample_2.json.

--max-in-memory Option

During a scan, as individual files are scanned, the scan details for those files are kept on
memory till the scan is completed. Then after the scan is completed, they are written in the
specified output format.

Now, if the scan involves a very large number of files, they might not fit in the memory during
the scan. For this reason, disk-caching can be used for some/all of the files.

Some important INTEGER values of the --max-in-memory INTEGER option:

	0 - Unlimited Memory, store all the file/directory scan results on memory

	-1 - Use only Disk-Caching, store all the file/directory scan results on disk

	10000 - Default, store 10,000 file/directory scan results on memory and the rest on disk

An example usage:

./scancode -clieu --json-pp sample.json samples --max-in-memory -1

Scancode Output Formats

Scan results generated by Scancode are available in different formats, to be specified by the
following options.

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--csv FILE

	Write scan output as CSV to FILE.

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	Write scan output as a mini HTML
application to FILE.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

Note

You can Output Scan Results in two different file formats simultaniously in one Scan. An
example - ./scancode -clpieu --json-pp output.json --html output.html samples.

Note

All the examples and snippets that follows heas been generated by scanning the samples
folder distributed with scancode-toolkit.

--json FILE

Among the ScanCode Output Formats, json is the most important one, and is recommended over
others. Scancode Workbench and other applications that use Scancode Result data as input accept
only the json format.

Note

There isn’t any default output option in Scancode Versions 3.x, unlike 2.x versions (which had
json as default).

The following code performs a scan on the samples directory, and publishes the results in
json format:

./scancode -clpieu --json output.json samples

Note

The default json format prints the whole report without line breaks/spaces/indentations,
which can be ugly to look at.

[image: ../../_images/json_ugly.png]

The entire JSON file is structured in the following manner:

At first some general information on the scan, what options were used, the number of files etc.
And then all the files follow.

{
 "headers": [
 {
 "tool_name": "scancode-toolkit",
 "tool_version": "3.1.1",
 "options": {
 "input": [
 "samples/"
],
 "--copyright": true,
 "--email": true,
 "--info": true,
 "--json-pp": "output.json",
 "--license": true,
 "--package": true,
 "--url": true
 },
 "notice": "Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.",
 "start_timestamp": "2019-10-19T191117.292858",
 "end_timestamp": "2019-10-19T191219.743133",
 "message": null,
 "errors": [],
 "extra_data": {
 "files_count": 36
 }
 }
],
 "files": [
 {
 "path": "samples",
 "type": "directory",
 ...
 ...
 ...
 "scan_errors": []
 },
 {
 "path": "samples/README",
 "type": "file",
 "name": "README",
 "base_name": "README",
 "extension": "",
 "size": 236,
 "date": "2019-02-12",
 "sha1": "2e07e32c52d607204fad196052d70e3d18fb8636",
 "md5": "effc6856ef85a9250fb1a470792b3f38",
 "mime_type": "text/plain",
 "file_type": "ASCII text",
 "programming_language": null,
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
 },
 ...
 ...
 ...
 {
 "path": "samples/zlib/iostream2/zstream_test.cpp",
 "type": "file",
 "name": "zstream_test.cpp",
 "base_name": "zstream_test",
 "extension": ".cpp",
 "size": 711,
 "date": "2019-02-12",
 ...
 ...
 ...
 "scan_errors": []
 }
]
}

--json-pp FILE

json-pp stands for JSON Pretty-Print format. In the previous format, i.e. Simple json,
the whole output is printed in one line, which isn’t well suited for getting information if
you’re looking at the file itself (or printing at stdout). So this option formats the output
results in json but in a properly spaced and indented manner, and is easy to look at.

The following code performs a scan on the samples directory, and publishes the results in
json-pp format:

./scancode -clpieu --json-pp output.json samples

A sample JSON output for an individual file will look like:

{
 "path": "samples/zlib/iostream2/zstream.h",
 "type": "file",
 "name": "zstream.h",
 "base_name": "zstream",
 "extension": ".h",
 "size": 9283,
 "date": "2019-02-12",
 "sha1": "fca4540d490fff36bb90fd801cf9cd8fc695bb17",
 "md5": "a980b61c1e8be68d5cdb1236ba6b43e7",
 "mime_type": "text/x-c++",
 "file_type": "C++ source, ASCII text",
 "programming_language": "C++",
 "is_binary": false,
 "is_text": true,
 "is_archive": false,
 "is_media": false,
 "is_source": true,
 "is_script": false,
 "licenses": [
 {
 "key": "mit-old-style",
 "score": 100.0,
 "name": "MIT Old Style",
 "short_name": "MIT Old Style",
 "category": "Permissive",
 "is_exception": false,
 "owner": "MIT",
 "homepage_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "text_url": "http://fedoraproject.org/wiki/Licensing:MIT#Old_Style",
 "reference_url": "https://enterprise.dejacode.com/urn/urn:dje:license:mit-old-style",
 "spdx_license_key": null,
 "spdx_url": "",
 "start_line": 9,
 "end_line": 15,
 "matched_rule": {
 "identifier": "mit-old-style_cmr-no_1.RULE",
 "license_expression": "mit-old-style",
 "licenses": [
 "mit-old-style"
],
 "is_license_text": true,
 "is_license_notice": false,
 "is_license_reference": false,
 "is_license_tag": false,
 "matcher": "2-aho",
 "rule_length": 71,
 "matched_length": 71,
 "match_coverage": 100.0,
 "rule_relevance": 100
 }
 }
],
 "license_expressions": [
 "mit-old-style"
],
 "copyrights": [
 {
 "value": "Copyright (c) 1997 Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "holders": [
 {
 "value": "Christian Michelsen Research AS Advanced Computing",
 "start_line": 3,
 "end_line": 5
 }
],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [
 {
 "url": "http://www.cmr.no/",
 "start_line": 7,
 "end_line": 7
 }
],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

This is the recommended Output option for Scancode Toolkit.

--json-lines FILE

ScanCode also has a --json-lines format option, where each report of a file scanned is
formatted in one line.

The following code performs a scan on the samples directory, and publishes the results in
json-lines format:

./scancode -clpieu --json-lines output.json samples

Here is a sample line from a report generated by the jsonlines format:

{"files":[{"path":"samples/zlib/ada",licenses":[],"copyrights":[],"packages":[]}]}

The header information is also formatted in one line (i.e. The First Line of the file).

The whole Output file looks like:

{"headers":[{"tool_name":"scancode-toolkit","tool_version":"3.1.1","options":{"input":["samples/"],"--copyright":true,"--email":true,"--info":true,"--json-lines":"output.json","--license":true,"--package":true,"--url":true},"notice":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nScanCode is a free software code scanning tool from nexB Inc. and others.\nVisit https://github.com/nexB/scancode-toolkit/ for support and download.","start_timestamp":"2019-10-19T210920.143831","end_timestamp":"2019-10-19T211052.048182","message":null,"errors":[],"extra_data":{"files_count":36}}]}
{"files":[{"path":"samples" ... "scan_errors":[]}]}
{"files":[{"path":"samples/README", ... "scan_errors":[]}]}
{"files":[{"path":"samples/screenshot.png", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/EULA", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/LICENSE", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-1.1.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/apache-2.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/bouncycastle.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/cpl-1.0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/licenses/lgpl.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/FixedMembershipToken.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/GuardedBy.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/ImmutableReference.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RATE_LIMITER.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStub.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/RouterStubManager.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/JGroups/src/S3_PING.java", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/adler32.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/deflate.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zlib.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/zutil.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/ada/zlib.ads", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/AssemblyInfo.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/ChecksumImpl.cs", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/LICENSE_1_0.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/dotzlib/readme.txt", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/gcc_gvmat64/gvmat64.S" ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.c", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/infback9/infback9.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream.h", ... "scan_errors":[]}]}
{"files":[{"path":"samples/zlib/iostream2/zstream_test.cpp", ... "scan_errors":[]}]}

Note

This jsonlines format also omits other file information like type, name, date,
extension, sha1 and md5 hashes, programming language etc.

Comparing Different json Output Formats

Default --json Output:

[image: ../../_images/output_json.png]

--json-pp Output:

[image: ../../_images/output_jsonpp.png]

--json-lines Output:

[image: ../../_images/output_jsonlines.png]

--spdx-rdf FILE

SPDX [https://spdx.org/] stands for “Software Package and Data Exchange” and is an open standard
for communicating software bill of material information (including components, licenses,
copyrights, and security references).

The following code performs a scan on the samples directory, and publishes the results in
spdx-rdf format:

./scancode -clpieu --spdx-rdf output.spdx samples

Learn more about SPDX specifications here [https://spdx.org/specifications] and in this GitHub
repository [https://github.com/spdx/spdx-spec].

Here the file is structured as a dictionary of named properties and classes using W3C’s
RDF Technology [https://www.w3.org/RDF/].

… figure:: data/output_spdx_rdf1.png

--spdx-tv FILE

This format is another SPDX variant, with the output file being structured in the following
manner:

The following code performs a scan on the samples directory, and publishes the results in
spdx-tv format:

./scancode -clpieu --spdx-tv output.spdx samples

A SPDX-TV file starts with:

Document Information

SPDXVersion: SPDX-2.1
DataLicense: CC0-1.0
DocumentComment: <text>Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. No content created from
ScanCode should be considered or used as legal advice. Consult an Attorney
for any legal advice.
ScanCode is a free software code scanning tool from nexB Inc. and others.
Visit https://github.com/nexB/scancode-toolkit/ for support and download.</text>

Creation Info

Creator: Tool: ScanCode 2.2.1
Created: 2019-09-22T21:55:04Z

After a section titled #Packages, a list follows.

[image: ../../_images/output_spdx_tv_package.png]

Each File information is listed under a #File title, for each of the files.

	
	FileName

	FileChecksum

	
	LicenseConcluded

	LicenseInfoInFile

	
	FileCopyrightText

An example goes as follows:

[image: ../../_images/output_spdx_tv_file.png]

After the files section, there’s a section for licenses under a #Licences title, with the
following information for each license:

	
	LicenseID

	
	LicenseComment

	
	ExtractedText

Here’s an example:

[image: ../../_images/output_spdx_tv_licenses.png]

--html FILE

ScanCode supports formatting the Output result is a simple html format, to open with your
favorite browser. This helps quick visualization of the detected license/copyright and other
main information in the form of tables.

The following code performs a scan on the samples directory, and publishes the results in
HTML format:

./scancode -clpieu --html output.html samples

The HTML page generated has these following Tables:

	
	Copyright and Licenses Information

	File Information

	
	Package Information

	Licenses (Links to Dejacode/License Homepage)

[image: ../../_images/output_html1.png]

[image: ../../_images/output_html2.png]

[image: ../../_images/output_html3.png]

--html-app FILE

ScanCode also supports formatting the output in a HTML visualization tool, which is more
helpful than the standard HTML format.

The following code performs a scan on the samples directory, and publishes the results in
html-app format:

./scancode -clpieu --csv output.html samples

The Files scanned are shown in the left sidebar, and the section on the right contains separate
tabs for the following:

	
	License Summary

	Copyright Summary

	Clues

	
	File Details

	Packages

Note

The HTML app also contains a Search option to easily find what you are looking for.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

[image: ../../_images/output_html_app1.png]

[image: ../../_images/output_html_app2.png]

[image: ../../_images/output_html_app3.png]

--csv FILE

ScanCode can publish results in the useful .csv format.

The following code performs a scan on the samples directory, and publishes the results in
csv format:

./scancode -lpceiu --csv sample.csv samples

The first line of the csv file contains the headings, and they are:

	
	Resource,

	type,

	name,

	base_name,

	extension,

	date,

	size,

	sha1,

	md5,

	files_count,

	mime_type,

	file_type,

	programming_language,

	is_binary,

	is_text,

	is_archive,

	is_media,

	is_source,

	
	is_script,

	scan_errors,

	license__key,

	license__score,

	license__short_name,

	license__category,

	license__owner,

	license__homepage_url,

	license__text_url,

	license__reference_url,

	license__spdx_license_key,

	license__spdx_url,

	matched_rule__identifier,

	matched_rule__license_choice,

	matched_rule__licenses,

	copyright,

	copyright_holder,

	author,

	
	email,

	start_line,

	end_line,

	url,

	package__type,

	package__name,

	package__version,

	package__primary_language,

	package__summary,

	package__description,

	package__size,

	package__release_date,

	package__homepage_url,

	package__notes,

	package__bug_tracking_url,

	package__vcs_repository,

	package__copyright_top_level

Each subsequent line represents one element, i.e. can be any of the following:

	
	license

	
	copyright

	
	package

	
	email

	
	url

So if there’s multiple elements in a file, they are each given an entry with the details mentioned
earlier.

[image: ../../_images/output_csv.png]

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.html:
[
 {% if results.license_copyright %}
 {% for location, data in results.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$./scancode -clpeui --custom-output sample.json --custom-template sample.html samples
Scanning files...
 [####################################] 46
Scanning done.

Now are results are saved in t.json and we can easily view them with head t.json:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

Controlling Scancode Output and Filters

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

--strip-root Vs. --full-root

For a default scan of the “samples” folder, this a comparison between the default,
strip-root and full-root options.

An example Scan

./scancode -cplieu --json-pp output.json samples --full-root

These two changes only the “path” attribute of the file information. For this comparison we
compare the “path” attributes of the file LICENSE inside JGroups directory.

The default path:

"path": "samples/JGroups/LICENSE",

For the --full-root option, the path relative to the Root of your local filesystem.

"path": "/home/ayansm/Desktop/GSoD/scancode-toolkit-versions/scancode-toolkit-2.2.1/samples/JGroups/LICENSE"

For the --strip-root option, the root directory (here samples) is removed from path :

"path": "JGroups/LICENSE"

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

--ignore-author <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common author then --ignore-author option can be used to do
the same.

This scan ignores all files with authors matching the string “Apache Software Foundation”:

./scancode -cplieu --json-pp output.json samples --ignore-author "Apache Software Foundation"

More information on Glob Pattern Matching.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

--ignore-copyright-holder <pattern> Option

In a normal scan, all files inside the directory specified as an input argument is scanned and
subsequently included in the scan report. But if you want to run the scan on only some selective
files, with some specific common copyright holder then --ignore-copyright-holder option
can be used to do the same.

This scan ignores all files with Copyright Holders matching the string “Free Software Foundation”:

./scancode -cplieu --json-pp output.json samples --ignore-copyright-holder "Free Software Foundation"

More information on Glob Pattern Matching.

--only-findings Plugin

This option removes from the scan results, the files where nothing significant has been
detected, like files which doesn’t contain any licenses, copyrights, emails or urls (if
requested in the scan options), and isn’t a package.

An example Scan:

./scancode -cplieu --json-pp output.json samples --only-findings

Note

This also changes in the result displayed, the number of files scanned.

For example, scanning the sample files (distributed by default with scancode-toolkit) without
this option, displays in it’s report information of 43 files. But after enabling this option, the
result shows information for only 31 files.

Pre-Scan Options

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--summary-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--summary-by-facet

--ignore Option

In a scan, all files inside the directory specified as an input argument is scanned. But if
there are some files which you don’t want to scan, the --ignore option can be used to do
the same.

A sample usage:

./scancode --ignore "*.java" samples samples.json

Here, Scancode ignores files ending with .java, and continues with other files as usual.

More information on Glob Pattern Matching.

--include Option

In a normal scan, all files inside the directory specified as an input argument is scanned. But
if you want to run the scan on only some selective files, then --include option can be used
to do the same.

A sample usage:

./scancode --include "*.java" samples samples.json

Here, Scancode selectively scans files that has names ending with .java, and ignores all other files. This
is basically complementary in behavior to the --ignore option.

More information on Glob Pattern Matching.

--classify

Sub-Option

The options --license-clarity-score and --summary-key-files are sub-options of
--classify. --license-clarity-score and --summary-key-files are Post-Scan
Options.

This option makes ScanCode further classify scanned files/directories, to determine whether they
fall in these following categories

	legal

	readme

	top-level

	manifest

A manifest file in computing is a file containing metadata for a group of accompanying
files that are part of a set or coherent unit.

	key-file

A KEY file is a generic file extension used by various programs when registering legal copies
of the software. It may be saved in a plain text format, but generally contains some form of
encrypted key string that authenticates the purchase and registers the software.

As in, to the JSON object of each file scanned, these extra attributes are added:

"is_legal": false,
"is_manifest": false,
"is_readme": true,
"is_top_level": true,
"is_key_file": true,

--facet Option

Sub-Option

The option --summary-by-facet is a sub-option of --facet. --summary-by-facet is
a Post-Scan Option.

Valid <facet> values are:

	core,

	dev,

	tests,

	docs,

	data,

	examples.

You can use the --facet option in the following manner:

./scancode -clpieu --json-pp sample_facet.json samples --facet dev="*.java" --facet dev="*.c"

This adds to the header object, the following attribute:

"--facet": [
 "dev=*.java",
 "dev=*.c"
],

Here in this example, .java and .c files are marked as it belongs to facet dev.

As a result, .java file has the following attribute added:

"facets": [
 "dev"
],

Note

All other files which are not dev are marked to be included in the facet core.

For each facet, the --facet option precedes the <facet>=<pattern> argument. For specifying
multiple facets, this whole part is repeated, including the --facet option.

For users who want to know What is a Facet?.

Glob Pattern Matching

All the Pre-Scan options use pattern matching, so the basics of Glob Pattern Matching is
discussed briefly below.

Glob pattern matching is useful for matching a group of files, by using patterns in their
names. Then using these patterns, files are grouped and treated differently as required.

Here are some rules from the Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]
on glob patterns. Refer the same for more detailed information.

A string is a wildcard pattern if it contains one of the characters ‘?’, ‘*’ or ‘[‘. Globbing
is the operation that expands a wildcard pattern into the list of pathnames matching the
pattern. Matching is defined by:

	A ‘?’ (not between brackets) matches any single character.

	A ‘*’ (not between brackets) matches any string, including the empty string.

	An expression “[…]” where the first character after the leading ‘[‘ is not an ‘!’ matches a
single character, namely any of the characters enclosed by the brackets.

	There is one special convention: two characters separated by ‘-‘ denote a range.

	An expression “[!…]” matches a single character, namely any character that is not matched
by the expression obtained by removing the first ‘!’ from it.

	A ‘/’ in a pathname cannot be matched by a ‘?’ or ‘*’ wildcard, or by a range like “[.-0]”.

Note that wildcard patterns are not regular expressions, although they are a bit similar.

For more information on Glob pattern matching refer these resources:

	Linux Manual [http://man7.org/linux/man-pages/man7/glob.7.html]

	Wildcard Match Documentation [https://facelessuser.github.io/wcmatch/glob/].

You can also import these Python Libraries to practice UNIX style pattern matching:

	fnmatch [https://docs.python.org/2/library/fnmatch.html] for File Name matching

	glob [https://docs.python.org/2/library/glob.html#module-glob] for File Path matching

What is a Facet?

A facet is defined as follows (by ClearlyDefined):

A facet of a component is a subset of the files related to the component. It’s really just a
grouping that helps us understand the shape of the project. Each facet is described by a set of
glob expressions, essentially wildcard patterns that are matched against file names.

Each facet definition can have zero or more glob expressions. A file can be captured by more
than one facet. Any file found but not captured by a defined facet is automatically assigned to
the core facet.

	core - The files that go into making the release of the component. Note that the core
facet is not explicitly defined. Rather, it is made up of whatever is not in any other facet.
So, by default, all files are in the core facet unless otherwise specified.

	data - The files included in any data distribution of the component.

	dev - Files primarily used at development time (e.g., build utilities) and not
distributed with the component

	docs - Documentation files. Docs may be included with the executable component or
separately or not at all.

	examples – Like docs, examples may be included in the main component release or
separately.

	tests – Test files may include code, data and other artifacts.

Important Links:

	Facets [https://github.com/clearlydefined/clearlydefined/blob/master/docs/clearly.md]

	ClearlyDefined [https://clearlydefined.io/about]

Post-Scan Options

Post-Scan options activate their respective post-scan plugins which execute the task.

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of - --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.

Sub-Option of - --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--is-license-text

	Set the “is_license_text” flag to true for
files that contain mostly license texts and
notices (e.g. over 90% of the content).

Sub-Option of - --info and --license-text.

Warning

--is-license-text is an experimental Option.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of - --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize license, copyright and other scans
at the codebase level.

Sub-Options:

	--summary-by-facet

	--summary-key-files

	--summary-with-details

	--summary-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of - --summary and --facet.

	--summary-key-files

	Summarize license, copyright and other scans
for key, top-level files. Key files are top-
level codebase files such as COPYING, README
and package manifests as reported by the
--classify option “is_legal”, “is_readme”,
“is_manifest” and “is_top_level” flags.

Sub-Option of - --classify and --summary.

	--summary-with-details

	Summarize license, copyright and other scans
at the codebase level, keeping intermediate
details at the file and directory level.

To see all plugins available via command line help, use --plugins.

Note

Plugins that are shown by using --plugins inlcude the following:

	Post-Scan Plugins (and, the following)

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

--mark-source Option

Dependency

The option --mark-source is a sub-option of and requires the option --info.

The mark-source option marks the “is_source” attribute of a directory to be “True”, if more
than 90% of the files under that directory is source files, i.e. Their “is_source” attribute is
“True”.

When the following command is executed to scan the samples directory with this option enabled:

./scancode -clpieu --json-pp output.json samples --mark-source

Then, the following directories are marked as “Source”, i.e. Their “is_source” attribute is changed
from “false” to “True”.

	samples/JGroups/src

	samples/zlib/iostream2

	samples/zlib/gcc_gvmat64

	samples/zlib/ada

	samples/zlib/infback9

--consolidate Option

Dependency

The option --consolidate is a sub-option of and requires the options --license
, --copyright and --package.

The JSON file containing scan results after using the --consolidate Plugin is structured as
follows: (note: “…” in the image contains more data)

An example Scan:

./scancode -clpieu --json-pp output.json samples --consolidate

The JSON output file is structured as follows:

{
 "headers": [
 {...}
],
 "consolidated_components": [
 {...
 },
 {
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
 },
 {...
 }
],
 "consolidated_packages": [],
 "files": [
]
}

Each consolidated component has the following information:

"consolidated_components": [
{
 "type": "license-holders",
 "identifier": "dmitriy_anisimkov_1",
 "consolidated_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "consolidated_holders": [
 "Dmitriy Anisimkov"
],
 "consolidated_copyright": "Copyright (c) Dmitriy Anisimkov",
 "core_license_expression": "gpl-2.0-plus WITH ada-linking-exception",
 "core_holders": [
 "Dmitriy Anisimkov"
],
 "other_license_expression": null,
 "other_holders": [],
 "files_count": 1
},

In addition to this, in every file/directory where the consolidated part (i.e. License information)
was present, a “consolidated_to” attribute is added pointing to the “identifier” of
“consolidated_components”:

"consolidated_to": [
 "dmitriy_anisimkov_1"
],

Note that multiple files may have the same “consolidated_to” attribute.

--filter-clues Option

The --filter-clues Plugin filters redundant duplicated clues already contained in detected
licenses, copyright texts and notices.

--is-license-text Option

Dependency

The option --is-license-text is a sub-option of and requires the options
--info and --license-text.
Also, the option --license-text is a sub-option of and requires the options
--license.

If the --is-license-text is used, then the “is_license_text” flag is set to true for files that
contain mostly license texts and notices. Here mostly means over 90% of the content of the file.

An example Scan:

./scancode -clpieu --json-pp output.json samples --license-text --is-license-text

If the samples directory is scanned with this plugin, the files containing mostly license texts
will have the following attribute set to ‘true’:

"is_license_text": true,

The files in samples that will have the “is_license_text” to be true are:

samples/JGroups/EULA
samples/JGroups/LICENSE
samples/JGroups/licenses/apache-1.1.txt
samples/JGroups/licenses/apache-2.0.txt
samples/JGroups/licenses/bouncycastle.txt
samples/JGroups/licenses/cpl-1.0.txt
samples/JGroups/licenses/lgpl.txt
samples/zlib/dotzlib/LICENSE_1_0.txt

Note that the license objects for each detected license in the files already has “is_license_text”
attributes by default, but not the file objects. They only have this attribute if the plugin is used.

Warning

--is-license-text is an experimental Option.

--license-clarity-score Option

Dependency

The option --license-clarity-score is a sub-option of and requires the option
--classify.

The --license-clarity-score plugin when used in a scan, computes a summary license clarity
score at the codebase level.

An example Scan:

./scancode -clpieu --json-pp output.json samples --classify --license-clarity-score

The “license_clarity_score” will have the following attributes:

	
	“score”

	“declared”

	
	“discovered”

	“consistency”

	
	“spdx”

	“license_texts”

It whole JSON file is structured as follows, when it has “license_clarity_score”:

{
 "headers": [
 { ...
 }
],
 "license_clarity_score": {
 "score": 17,
 "declared": false,
 "discovered": 0.69,
 "consistency": false,
 "spdx": false,
 "license_texts": false
 },
 "files": [
 ...
]
}

--license-policy FILE Option

The Policy file is a YAML (.yml) document with the following structure:

license_policies:
- license_key: mit
 label: Approved License
 color_code: '#00800'
 icon: icon-ok-circle
- license_key: agpl-3.0
 label: Approved License
 color_code: '#008000'
 icon: icon-ok-circle

Note

In the policy file only the “license_key” is a required field.

Applying License Policies during a ScanCode scan, using the --license-policy Plugin:

./scancode -clipeu --json-pp output.json samples --license-policy policy-file.yml

Note

--license-policy FILE is a not a sub-option of --license. It works normally without
-l.

This adds to every file/directory an object “license_policy”, having as further attributes under it
the fields as specified in the .YAML file. Here according to our example .YAML file, the attributes
will be:

	
	“license_key”

	
	“label”

	
	“color_code”

	
	“icon”

Here the samples directory is scanned, and the Scan Results for a sample file is as follows:

{
 "path": "samples/JGroups/licenses/apache-2.0.txt",
 ...
 ...
 ...
 "licenses": [
 ...
 ...
 ...
],
 "license_expressions": [
 "apache-2.0"
],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "license_policy": {
 "license_key": "apache-2.0",
 "label": "Approved License",
 "color_code": "#008000",
 "icon": "icon-ok-circle"
 },
 "urls": [],
 "files_count": 0,
 "dirs_count": 0,
 "size_count": 0,
 "scan_errors": []
},

More information on the License Policy Plugin and usage.

--summary Option

Sub-Option

The option --summary-by-facet, --summary-key-files and
--summary-with-details``are sub-options of ``--summary. These Sub-Options are all
Post-Scan Options.

An example Scan:

./scancode -clpieu --json-pp output.json samples --summary

The whole JSON file is structured as follows, when the --summary plugin is applied:

{
 "headers": [
 {
 ...
 }
],
 "summary": {
 "license_expressions": [...
],
 "copyrights": [...
],
 "holders": [...
],
 "authors": [...
],
 "programming_language": [...
],
 "packages": []
 },
 "files": [...
]
}

The Summary object has the following attributes.

	
	“license_expressions”

	“copyrights”

	
	“holders”

	“authors”

	
	“programming_language”

	“packages”

Each attribute has multiple entries each containing “value” and “count”, with their values having
the summary information inside them.

A sample summary object generated:

"summary": {
"license_expressions": [
 {
 "value": "zlib",
 "count": 13
 },
]
],
"copyrights": [
 {
 "value": "Copyright (c) Mark Adler",
 "count": 4
 },
 {
 "value": "Copyright (c) Free Software Foundation, Inc.",
 "count": 2
 },
 {
 "value": "Copyright (c) The Apache Software Foundation",
 "count": 1
 },
 {
 "value": "Copyright Red Hat, Inc. and individual contributors",
 "count": 1
 }
],
"holders": [
 {
 "value": null,
 "count": 10
 },
 {
 "value": "Mark Adler",
 "count": 4
 },
 {
 "value": "Red Hat, Inc. and individual contributors",
 "count": 1
 },
 {
 "value": "The Apache Software Foundation",
 "count": 1
 },
],
"authors": [
 {
 "value": "Bela Ban",
 "count": 4
 },
 {
 "value": "Brian Stansberry",
 "count": 1
 },
 {
 "value": "the Apache Software Foundation (http://www.apache.org/)",
 "count": 1
 }
],
"programming_language": [
 {
 "value": "C++",
 "count": 13
 },
 {
 "value": "Java",
 "count": 7
 },
],
"packages": []

--summary-by-facet Option

Dependency

The option --summary-by-facet is a sub-option of and requires the options --facet
and --summary.

Running the scan with --summary --summary-by-facet Plugins creates individual summaries for
all the facets with the same license, copyright and other scan information, at a codebase level
(in addition to the codebase level general summary generated by --summary Plugin)

An example scan using the --summary-by-facet Plugin:

./scancode -clieu --json-pp output.json samples --summary --facet dev="*.java" --facet dev="*.c" --summary-by-facet

Note

All other files which are not dev are marked to be included in the facet core.

Warning

Running the same scan with ./scancode -clpieu i.e. with -p generates an error.
Avoid this.

The JSON file containing scan results is structured as follows:

{
 "headers": [...
],
 "summary": { ...
 },
 "summary_by_facet": [
 {
 "facet": "core",
 "summary": { ...
 }
 },
 {
 "facet": "dev",
 "summary": { ...
 }
 },
 {
 "facet": "tests",
 "summary": { ...
 }
 },
 {
 "facet": "docs",
 "summary": { ...
 }
 },
 {
 "facet": "data",
 "summary": { ...
 }
 },
 {
 "facet": "examples",
 "summary": { ...
 }
 }
],
 "files": [
}

A sample “summary_by_facet” object generated by the previous scan (shortened):

"summary_by_facet": [
 {
 "facet": "core",
 "summary": {
 "license_expressions": [
 {
 "value": "mit",
 "count": 1
 },
],
 "copyrights": [
 {
 "value": "Copyright (c) Free Software Foundation, Inc.",
 "count": 2
 },
],
 "holders": [
 {
 "value": "The Apache Software Foundation",
 "count": 1
 },
 "authors": [
 {
 "value": "Gilles Vollant",
 "count": 1
 },
],
 "programming_language": [
 {
 "value": "C++",
 "count": 8
 },
]
 }
 },
 {
 "facet": "dev",
 "summary": {
 "license_expressions": [
 {
 "value": "zlib",
 "count": 5
 },
 "copyrights": [
 {
 "value": "Copyright Red Hat Middleware LLC, and individual contributors",
 "count": 1
 },
],
 "holders": [
 {
 "value": "Mark Adler",
 "count": 3
 },
],
 "authors": [
 "value": "Brian Stansberry",
 "count": 1
 },
],
 "programming_language": [
 {
 "value": "Java",
 "count": 7
 },
 {
 "value": "C++",
 "count": 5
 }
]
 }
 },
],

Note

Summaries for all the facets are generated by default, regardless of facets not having any
files under them.

For users who want to know What is a Facet?.

--summary-key-files Option

Dependency

The option --summary-key-files is a sub-option of and requires the options
--classify and --summary.

An example Scan:

./scancode -clpieu --json-pp output.json samples --classify --summary --summary-key-files

Running the scan with --summary --summary-key-files Plugins creates summaries for key files
with the same license, copyright and other scan information, at a codebase level (in addition
to the codebase level general summary generated by --summary Plugin)

The resulting JSON file containing the scan results is structured as follows:

{
 "headers": [...
],
 "summary": {
 "license_expressions": [...
],
 "copyrights": [...
],
 "holders": [...
],
 "authors": [...
],
 "programming_language": [...
],
 "packages": []
 },
 "summary_of_key_files": {
 "license_expressions": [
 {
 "value": null,
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 1
 }
],
 "holders": [
 {
 "value": null,
 "count": 1
 }
],
 "authors": [
 {
 "value": null,
 "count": 1
 }
],
 "programming_language": [
 {
 "value": null,
 "count": 1
 }
]
 },
 "files": [

These following flags for each file/directory is also present (generated by --classify)

	
	“is_legal”

	“is_manifest”

	
	“is_readme”

	“is_top_level”

	
	“is_key_file”

--summary-with-details Option

The --summary plugin summarizes license, copyright and other scan information at the
codebase level. Now running the scan with the --summary-with-details plugin instead creates
summaries at individual file/directories with the same license, copyright and other scan
information, but at a file/directory level (in addition to the the codebase level summary).

An example Scan:

./scancode -clpieu --json-pp output.json samples --summary-with-details

Note

--summary is redundant in a scan when --summary-with-details is already selected.

A sample file object in the scan results (a directory level summary of samples/arch) is
structured as follows:

{
 "path": "samples/arch",
 "type": "directory",
 "name": "arch",
 "base_name": "arch",
 "extension": "",
 "size": 0,
 "date": null,
 "sha1": null,
 "md5": null,
 "mime_type": null,
 "file_type": null,
 "programming_language": null,
 "is_binary": false,
 "is_text": false,
 "is_archive": false,
 "is_media": false,
 "is_source": false,
 "is_script": false,
 "licenses": [],
 "license_expressions": [],
 "copyrights": [],
 "holders": [],
 "authors": [],
 "packages": [],
 "emails": [],
 "urls": [],
 "is_legal": false,
 "is_manifest": false,
 "is_readme": false,
 "is_top_level": true,
 "is_key_file": false,
 "summary": {
 "license_expressions": [
 {
 "value": "zlib",
 "count": 3
 },
 {
 "value": null,
 "count": 1
 }
],
 "copyrights": [
 {
 "value": null,
 "count": 1
 },
 {
 "value": "Copyright (c) Jean-loup Gailly",
 "count": 1
 },
 {
 "value": "Copyright (c) Jean-loup Gailly and Mark Adler",
 "count": 1
 },
 {
 "value": "Copyright (c) Mark Adler",
 "count": 1
 }
],
 "holders": [
 {
 "value": null,
 "count": 1
 },
 {
 "value": "Jean-loup Gailly",
 "count": 1
 },
 {
 "value": "Jean-loup Gailly and Mark Adler",
 "count": 1
 },
 {
 "value": "Mark Adler",
 "count": 1
 }
],
 "authors": [
 {
 "value": null,
 "count": 4
 }
],
 "programming_language": [
 {
 "value": "C++",
 "count": 3
 },
 {
 "value": null,
 "count": 1
 }
]
 },
 "files_count": 4,
 "dirs_count": 2,
 "size_count": 127720,
 "scan_errors": []
},

These following flags for each file/directory is also present (generated by --classify)

	
	“is_legal”

	“is_manifest”

	
	“is_readme”

	“is_top_level”

	
	“is_key_file”

How it all Works

	Overview
	How does ScanCode work?

Overview

How does ScanCode work?

For license detection, ScanCode uses a (large) number of license texts and license detection
‘rules’ that are compiled in a search index. When scanning, the text of the target file is
extracted and used to query the license search index and find license matches.

For copyright detection, ScanCode uses a grammar that defines the most common and less common
forms of copyright statements. When scanning, the target file text is extracted and ‘parsed’
with this grammar to extract copyright statements.

ScanCode-Toolkit performs the scan on a codebase in the following steps :

	Collect an inventory of the code files and classify the code using file types,

	Extract files from any archive using a general purpose extractor

	Extract texts from binary files if needed

	Use an extensible rules engine to detect open source license text and notices

	Use a specialized parser to capture copyright statements

	Identify packaged code and collect metadata from packages

	Report the results in the formats of your choice (JSON, CSV, etc.) for integration
with other tools

Scan results are provided in various formats:

	a JSON file simple or pretty-printed,

	SPDX tag value or XML, RDF formats,

	CSV,

	a simple unformatted HTML file that can be opened in browser or as a spreadsheet.

For each scanned file, the result contains:

	its location in the codebase,

	the detected licenses and copyright statements,

	the start and end line numbers identifying where the license or copyright was found in the
scanned file, and

	reference information for the detected license.

For archive extraction, ScanCode uses a combination of Python modules, 7zip and libarchive/bsdtar
to detect archive types and extract these recursively.

Several other utility modules are used such as libmagic for file and mime type detection.

Index

All “Basic” Scan Options

Option lists are two-column lists of command-line options and descriptions,
documenting a program’s options. For example:

	-c, --copyright

	Scan <input> for copyrights.

Sub-Options:

	--consolidate

	-l, --license

	Scan <input> for licenses.

Sub-Options:

	--consolidate

	--license-score INT

	--license-text

	--license-url-template TEXT

	--license-text-diagnostics

	--is-license-text

	-p, --package

	Scan <input> for packages.

Sub-Options:

	--consolidate

	-e, --email

	Scan <input> for emails.

Sub-Options:

	--max-email INT

	-u, --url

	Scan <input> for urls.

Sub-Options:

	--max-url INT

	-i, --info

	Include information such as:

	Size,

	Type,

	Date,

	Programming language,

	sha1 and md5 hashes,

	binary/text/archive/media/source/script flags

	Additional options through more CLI options

Sub-Options:

	--mark-source

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

	--generated

	Classify automatically generated code files with a flag.

	--max-email INT

	Report only up to INT emails found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --email

	--max-url INT

	Report only up to INT urls found in a
file. Use 0 for no limit. [Default: 50]

Sub-Option of - --url

	--license-score INTEGER

	Do not return license matches with scores lower than this score.
A number between 0 and 100. [Default: 0]
Here, a bigger number means a better match, i.e. Setting a higher license score
translates to a higher threshold (with equal or less number of matches).

Sub-Option of - --license

	--license-text

	Include the matched text for the detected licenses in the output report.

Sub-Option of - --license

Sub-Options:

	--license-text-diagnostics

	--is-license-text

	--license-url-template TEXT

	Set the template URL used for the license reference URLs.

In a template URL, curly braces ({}) are replaced by the license key.
[Default: https://enterprise.dejacode.com/urn/urn:dje:license:{}]

Sub-Option of - --license

	--license-text-diagnostics

	In the matched license text, include diagnostic highlights surrounding with
square brackets [] words that are not matched.

Sub-Option of - --license and --license-text

All “Core” Scan Options

	-n, --processes INTEGER

	Scan <input> using n parallel processes.
[Default: 1]

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print summary or progress messages.

	--timeout FLOAT

	Stop scanning a file if scanning takes longer
than a timeout in seconds. [Default: 120]

	--reindex-licenses

	Force a check and possible reindexing of the
cached license index.

	--from-json

	Load codebase from an existing JSON scan

	--max-in-memory INTEGER

	Maximum number of files and directories scan
details kept in memory during a scan.
Additional files and directories scan details
above this number are cached on-disk rather
than in memory. Use 0 to use unlimited memory
and disable on-disk caching. Use -1 to use
only on-disk caching. [Default: 10000]

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

Custom Output Format

While the three built-in output formats are convenient for a verity of use-cases, one may wish to
create their own output template, using the following arguments:

``--custom-output FILE --custom-template TEMP_FILE``

ScanCode makes this very easy, as it uses the popular Jinja2 template engine. Simply pass the path
to the custom template to the --custom-template argument, or drop it in a folder to
src/scancode/templates directory.

For example, if I wanted a simple CLI output I would create a template2.html with the
particular data I wish to see. In this case, I am only interested in the license and copyright
data for this particular scan.

template.html:
[
 {% if results.license_copyright %}
 {% for location, data in results.license_copyright.items() %}
 {% for row in data %}
 location:"{{ location }}",
 {% if row.what == 'copyright' %}copyright:"{{ row.value|escape }}",{% endif %}
 {% endfor %}
 {% endfor %}
 {% endif %}
]

.. note::

 File name and extension does not matter for the template file.

Now I can run ScanCode using my newly created template:

$./scancode -clpeui --custom-output sample.json --custom-template sample.html samples
Scanning files...
 [####################################] 46
Scanning done.

Now are results are saved in t.json and we can easily view them with head t.json:

[
 location:"samples/JGroups/LICENSE",
 copyright:"Copyright (c) 1991, 1999 Free Software Foundation, Inc.",

 location:"samples/JGroups/LICENSE",
 copyright:"copyrighted by the Free Software Foundation",
]

All Documentation/Help Options

	-h, --help

	Show the Help text and exit.

	--examples

	Show the Command Examples Text and exit.

	--about

	Show information about ScanCode and licensing
and exit.

	--version

	Show the version and exit.

	--list-packages

	Show the list of supported package types and exit.

	--plugins

	Show the list of available ScanCode plugins and exit.

	--print-options

	Show the list of selected options and exit.

All Extractcode Options

This is intended to be used as an input preparation step, before running the scan. Archives found
in an extracted archive are extracted recursively by default. Extraction is done in-place
in a directory named ‘-extract’ side-by-side with an archive.

To extract the packages in the samples directory

./extractcode samples

This extracts the zlib.tar.gz package:

[image: ../../_images/extractcode.png]

	--shallow

	Do not extract recursively nested archives (e.g. Not
archives in archives).

	--verbose

	Print verbose file-by-file progress messages.

	--quiet

	Do not print any summary or progress message.

	-h, --help

	Show the extractcode help message and exit.

	--about

	Show information about ScanCode and licensing and exit.

	--version

	Show the version and exit.

Other Important Documentation

	Type of Options

	How to Run a Scan

	Basic Tutorials

	How-To Guides

	How it all Works

	Contributing to Code Development

	Contributing to the Documentation

	Plugin Architecture

	FAQ

	Support

All “Output Control” Scan Options

	--strip-root

	Strip the root directory segment of all paths.

	--full-root

	Report full, absolute paths.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

	--ignore-author <pattern>

	Ignore a file (and all its findings)
if an author contains a match to the
<pattern> regular expression.

	--ignore-copyright-holder <pattern>

	Ignore a file (and all its findings)
if a copyright holder contains a match
to the <pattern> regular expression.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

	--only-findings

	Only return files or directories with
findings for the requested scans.
Files and directories without findings
are omitted (file information is not
treated as findings).

All Scan Output Options

	--json FILE

	Write scan output as compact JSON to FILE.

	--json-pp FILE

	Write scan output as pretty-printed JSON to
FILE.

	--json-lines FILE

	Write scan output as JSON Lines to FILE.

	--csv FILE

	Write scan output as CSV to FILE.

	--html FILE

	Write scan output as HTML to FILE.

	--custom-output

	Write scan output to FILE formatted with the
custom Jinja template file.

Mandatory Sub-option:

	--custom-template FILE

	--custom-template FILE

	Use this Jinja template FILE as a custom
template.

Sub-Option of: --custom-output

	--spdx-rdf FILE

	Write scan output as SPDX RDF to FILE.

	--spdx-tv FILE

	Write scan output as SPDX Tag/Value to FILE.

	--html-app FILE

	Write scan output as a mini HTML
application to FILE.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

All “Post-Scan” Options

	--mark-source

	Set the “is_source” flag to true for directories that
contain over 90% of source files as direct children
and descendants. Count the number of source files in a
directory as a new “source_file_counts” attribute

Sub-Option of - --url

	--consolidate

	Group resources by Packages or license and
copyright holder and return those groupings
as a list of consolidated packages and a list
of consolidated components.

Sub-Option of - --copyright, --license and
--packages.

	--filter-clues

	Filter redundant duplicated clues already
contained in detected licenses, copyright
texts and notices.

	--is-license-text

	Set the “is_license_text” flag to true for
files that contain mostly license texts and
notices (e.g. over 90% of the content).

Sub-Option of - --info and --license-text.

Warning

--is-license-text is an experimental Option.

	--license-clarity-score

	Compute a summary license clarity score at
the codebase level.

Sub-Option of - --classify.

	--license-policy FILE

	Load a License Policy file and apply it to
the scan at the Resource level.

	--summary

	Summarize license, copyright and other scans
at the codebase level.

Sub-Options:

	--summary-by-facet

	--summary-key-files

	--summary-with-details

	--summary-by-facet

	Summarize license, copyright and other scans
and group the results by facet.

Sub-Option of - --summary and --facet.

	--summary-key-files

	Summarize license, copyright and other scans
for key, top-level files. Key files are top-
level codebase files such as COPYING, README
and package manifests as reported by the
--classify option “is_legal”, “is_readme”,
“is_manifest” and “is_top_level” flags.

Sub-Option of - --classify and --summary.

	--summary-with-details

	Summarize license, copyright and other scans
at the codebase level, keeping intermediate
details at the file and directory level.

All “Pre-Scan” Options

	--ignore <pattern>

	Ignore files matching <pattern>.

	--include <pattern>

	Include files matching <pattern>.

	--classify

	Classify files with flags telling if the
file is a legal, or readme or test file,
etc.

Sub-Options:

	--license-clarity-score

	--summary-key-files

	--facet <facet_pattern>

	Here <facet_pattern> represents
<facet>=<pattern>. Add the <facet>
to files with a path matching <pattern>.

Sub-Options:

	--summary-by-facet

Note

Unlike previous 2.x versions, -c, -l, and -p are not default. If any of combination of these
options are used, ScanCode only performs that specific task, and not the others.
./scancode -e only scans for emails, and doesn’t scan for copyright/license/packages/general
information.

Note

These options, i.e. -c, -l, -p, -e, -u, and -i can be used together. As in, instead of
./scancode -c -i -p, you can write ./scancode -cip and it will be the same.

Note

The options --strip-root and --full-root can’t be used together, i.e. Any one option
may be used in a single scan.

Note

The default is to always include the last directory segment of the scanned path such that all
paths have a common root directory.

Note

All the Core Options are independent options, i.e. They don’t depend on other options.

Note

The HTML app also contains a Search option to easily find what you are looking for.

Note

There isn’t any default output option in Scancode Versions 3.x, unlike 2.x versions (which had
json as default).

Note

The default json format prints the whole report without line breaks/spaces/indentations,
which can be ugly to look at.

Note

This jsonlines format also omits other file information like type, name, date,
extension, sha1 and md5 hashes, programming language etc.

Note

You can Output Scan Results in two different file formats simultaniously in one Scan. An
example - ./scancode -clpieu --json-pp output.json --html output.html samples.

Note

All the examples and snippets that follows heas been generated by scanning the samples
folder distributed with scancode-toolkit.

Note

In the policy file only the “license_key” is a required field.

Note

--license-policy FILE is a not a sub-option of --license. It works normally without
-l.

Note

Plugins that are shown by using --plugins inlcude the following:

	Post-Scan Plugins (and, the following)

	Pre-Scan Plugins

	Output Options

	Output Control

	Basic Scan Options

Note

--summary is redundant in a scan when --summary-with-details is already selected.

Note

Summaries for all the facets are generated by default, regardless of facets not having any
files under them.

Note

All other files which are not dev are marked to be included in the facet core.

Tip

On Windows use scancode instead of path/to/scancode.

Warning

There isn’t a “Default” output option in Versions 3.x onwards, you have to
specify <OUTPUT FORMAT OPTION(s)> explicitly.

Note

Note that this both the options --ignore-author and --ignore-copyright-holder will
ignore a file even if it has other scanned data such as a license or errors.

Warning

The html-app feature has been deprecated and you should use Scancode Workbench instead
to visualize scan results. The official Repository link [https://github.com/nexB/scancode-workbench].
Also refer How to Visualize Scan results.

Warning

--is-license-text is an experimental Option.

 _images/core_lic_score_100.png
License Info Dashboard -

11

Total Number of Licenses

License Expressions

W other M ccby-25

1 gpl-2.0-plus WITH ad: exception

¥ boost-10 M mit-old-style M Igpl-2.1
W Igpl-2.1-plus M 2lib

samples
24

Total Number of Files with Licenses

License Keys

-

 other [ccrby-25 I gph-2.0plus
9 adarlinking-exception M boost-10
W igpl-21 W lgpl-2.1-plus M ziib

_images/develop.png
@ BUILD PASSING

_images/conclusion-form-01.png
@ AboutCode Manager - busybox-1.29.2-scan_20180831_abcm wiki_worksglite - X
File Edit View Window Help

4 B busybox-1.29.2 Column visibilitv . Show all Hide all Origininfa | Convright infa License infa Packase infa Search:
= applets
S e busybox-1.29.2/applets
= arch oath - ;lle o
o ile Name ize ile
8 archival Status ype
= configs busybox-1.29| | Needs Attention v |applets 0
B console-tools
™ coreutils busybox-129) applet_tables.c 6278 Csource, ASCII text
M debianutils busybox-129 | busybox applets.c 350 Csource, ASCII text
™ docs
B e2fsprogs busybox-129 | busyboxmkil 582 POSIX shell script, ASCII text
et executable
editors 1292‘
B examples busybox- busyboxmksuid 1358 POSIX shell script, ASCII text
M findutils 129.2/applets | jcense Expression executable
= include busybox-1.29, individual.c 448 Csource, ASCII text
™ init
= Kibc-utils Owner . .
™ libbb busybox-1.29 install.sh 3282 POSIX shell script, ASCIl text
™ libpwegrp executable
= loginutils busybox-1.29) Kbuild.src 1936 ASClltext
o Copyright
= mailutils
8 miscutils
' busybox-1.29 usage.c 1170 Csource, ASCII text
m modutils
 networking busybox- Modified usage_compressed 1660 POSIX shell script, ASCII text
@8 printutils 1.29.2/applet: Yes No executable
™ procps
proce Deployed
B gemu_multiarch_testing
= runit Yes © No
™ scripts 1 CodeType E
 selinux Activate Fil i v v v
= shell
M cvekdned - Show| 10 Previous 2 Next
Notes

_images/core_lic_score_0.png
License Info Dashboard - samples

14 29
Total Number of Licenses Total Number of Files with Licenses
License Expressions License Keys

W other M ccby-25 M cpl-10 9 other 1 gpl-20-plus M jboss-eula
W public-domain M Igpl-2.1 M lgpl-2.1-plus public-domain M Igpl-21 B boost-10
W boost-10 M zlib W Igpl-2.1-plus M 2lib

_images/done.png

_images/extractcode.png
i samples
awarch
2w 2lib.tar. gz-extract

o 2lib-1.2.8
& adiers2c
& zibh
B ilh
2lib.targz

_images/developer-tools-error.png
X

[w ﬂ Elements Console Sources Network Timeline Profiles Application Security —Audits

O ¥ top v () Preserve log

(*id", *scancode_notice", ‘scancode_version', scancode_options®, files_count", createdAt", updatedAt’) VALUES
(NULL, 'Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied. No content created from

ScanCode should be considered or used as legal advice. Consult an Attorney

for any legal advice.

ScanCode is a free software code scanning tool from nexB Inc. and others.

Visit https://qithub.com/nexB/scancode-toolkit/ for support and download.','2.2.0','{"-—copyright":true,"—
license":true,"--package":true,"-—email":true,"—-url":true,"—-info":true,"—-1license-score":0,"—
format":"json"}',3074, '2017-10-27 01:21:59.202 +00:00', '2017-10-27 01:21:59.202 +00:00');

Add Rows Progress: 0% aboutCodeDB. js:233
/Users/jilliandaquil/Debug/AboutCode-Manager-macos—x64-2.0.0/AboutCode-Manager.app/Contents/Resourc..: 770

VY error.DatabaseError
message: "SQLITE_ERROR: unrecognized token: "'http://www.w3.0rg/XML/1998/namespace%00%00%00%00xmns%00%00%00http: /www
name: "SequelizeDatabaseError"
»original: Error: SQLITE_ERROR: unrecognized token: "'http://www.w3.o0rg/XML/1998/namespace%00%00%00%00xm1ns%00%00%00ht
» parent: Error: SQLITE_ERROR: unrecognized token: "'http://www.w3.0rg/XML/1998/namespace%00%00%00%00xm1lns%00%00%00htty
sql: "INSERT INTO ‘urls® (“id",‘url’, start_line", end_line", createdAt", updatedAt", fileId') VALUES (NULL, 'http://v
stack: "SequelizeBaseError: SQLITE_ERROR: unrecognized token: "'http://www.w3.0rg/XML/1998/namespace%00%00%00%00xmlns

» _proto__: error.BaseError

_images/dialog-error.png
JSON Error

There is a problem with your JSON file. It may be
malformed (e.g., the addition of a trailing comma), or
there could be some other problem with the file.
Please check your file and try again.

The error thrown by the system is:

SyntaxError: Unexpected token] in JSON at position

227808

_images/files_sample.png
samples

4 myarch

2lib tar gz-extract
2lib.targz

4 1 JGroups

b i licenses

b stc
b EULA
I LICENSE
4 mzib
i ada
i douzlib
i gcc_gvmat6a
infbacka
iostream2
| adler32c
| deflatec
| deflate.n
& zibh
& 2utilc
& zutith
README
screenshot.png

_images/filter_sample.gif

_images/image00.png

nav.xhtml

 Table of Contents

 		
 AboutCode Documentation

 		
 ScanCode-Toolkit Documentation

 		
 Getting Started

 		
 Home

 		
 Comprehensive Installation

 		
 IDE Configuration

 		
 Documentation

 		
 What’s New in This Release?

 		
 Command Line Interface Reference

 		
 Synopsis

 		
 Getting Help from the Command Line

 		
 All Available Options

 		
 How to Run a Scan

 		
 Basic Options

 		
 Core Options

 		
 Scancode Output Formats

 		
 Controlling Scancode Output and Filters

 		
 Pre-Scan Options

 		
 Post-Scan Options

 		
 Basic Tutorials

 		
 How to Run a Scan

 		
 How to Visualize Scan results

 		
 How To Extract Archives

 		
 How to specify Scancode Output Format

 		
 How to set what will be detected in Scan

 		
 How-To Guides

 		
 How To Add a New License for Detection

 		
 How to Add New License Rules for Enhanced Detection

 		
 How it all Works

 		
 Overview

 		
 Contribute

 		
 Contributing to Code Development

 		
 How to cut a new release:

 		
 Contributing to the Documentation

 		
 Roadmap

 		
 Google Summer of Code 2017 - Final report

 		
 Miscellaneous

 		
 FAQ

 		
 Support

 		
 Runtime Performance Reports

 		
 Plugin Architecture

 		
 License Policy Plugin

 		
 Scancode-Workbench Documentation

 		
 Basics

 		
 Scancode Workbench Views

 		
 Building Requirements

 		
 ScanCode Workbench Platform Support

 		
 Check for Errors in the Developer Tools

 		
 Tutorials

 		
 Creating Conclusions

 		
 Importing and Exporting a JSON File

 		
 License Policy support in ScanCode Workbench

 		
 Navigating the Chart Summary View

 		
 Opening and Saving a SQlite File

 		
 Deltacode Documentation

 		
 Comprehensive Installation

 		
 System Requirements

 		
 Prerequisites

 		
 Installation on Linux and Mac

 		
 Installation on Windows

 		
 Un-installation

 		
 Deltacode Output: Format, Fields and Structure

 		
 Output Formats

 		
 Overall Structure

 		
 Deltacode Scoring

 		
 Delta Objects

 		
 License Additions and Changes

 		
 Copyright Holder Additions and Changes

 		
 Moved, Removed and Unmodified

 		
 Development

 		
 Code layout and conventions

 		
 JSON to CSV Conversion

 		
 Release Process

 		
 Steps to cut a new release:

 		
 AboutCode Docs

 		
 Contributor Project Ideas

 		
 Welcome to AboutCode!

 		
 Table of Contents

 		
 AboutCode projects are…

 		
 Contact

 		
 Technology

 		
 About your project application

 		
 Our Project ideas

 		
 Google Season of Docs 2019

 		
 Table of Contents

 		
 List of AboutCode projects

 		
 Contact

 		
 Technology

 		
 Technical Writing Skills Needed

 		
 About your project application

 		
 Our Documentation Project ideas

 		
 Tutorial ideas

 		
 How-To ideas

 		
 Reference ideas

 		
 Discussion ideas

 		
 Your Documentation Project ideas

 		
 Mentoring

 		
 Google Summer of Code 2017

 		
 Contact

 		
 Technology

 		
 About your project application

 		
 Project ideas

 		
 Google Summer of Code 2018

 		
 Google Summer of Code 2019

 		
 Table of Contents

 		
 AboutCode projects are…

 		
 Contact

 		
 Technology

 		
 Skills

 		
 About your project application

 		
 Our Project ideas

 		
 Mentoring

 		
 Writing good Commit Messages

 		
 AboutCode-Toolkit Documentation

 		
 AboutCode Toolkit

 		
 Build and tests status

 		
 REQUIREMENTS

 		
 INSTALLATION

 		
 REFERENCE

 		
 TESTS and DEVELOPMENT

 		
 HELP and SUPPORT

 		
 SOURCE CODE

 		
 HACKING

 		
 LICENSE

 		
 Reference

 		
 about

 		
 attrib

 		
 check

 		
 gen

 		
 inventory

 		
 Special Notes

 		
 ABOUT File Specification v3.1.2

 		
 Purpose

 		
 Specification

 		
 ABOUT file name

 		
 Lines of text

 		
 Field name

 		
 Field value

 		
 Fields are mandatory or optional

 		
 Extension and ignored fields

 		
 Fields validation

 		
 Fields order and multiple occurrences

 		
 Field referencing a file

 		
 Field referencing a URL

 		
 Flag fields

 		
 Referencing the file or directory documented by an ABOUT file

 		
 Other Mandatory fields

 		
 Optional Information fields

 		
 Optional Owner and Author fields

 		
 Optional Licensing fields

 		
 Optional Boolean flag fields

 		
 Optional Extension fields

 		
 Optional Extension fields to reference files stored in a version control system (VCS)

 		
 Optional Extension fields for checksums

 		
 AboutCode Data : ABCD

 		
 Summary

 		
 Context

 		
 ABCD: the AboutCode Data structure

 		
 Basic objects describing data about code

 		
 Attribute Names and Values

 		
 Name conventions

 		
 Value conventions

 		
 Object identifiers

 		
 Organizing data and relationships

 		
 Document format conventions

 		
 References between documents and payload, embedding other files

 		
 Document-as-files naming, exchange and storage

 		
 Documenting and validating attributes

 		
 Notes on YAML format

 		
 Notes on JSON Format

 		
 Notes on embedding ABC Data in source code files.

 		
 Notes on spreadsheet and CSV files

 		
 Impact on AttributeCode

 		
 Impact on ScanCode Toolkit

 		
 AboutCode Manager

 		
 New and Future tools

 		
 Help

 		
 AboutCode Projects

 		
 License

 		
 Document Maintenance

 		
 Document Software Setup

 		
 Clone AboutCode

 		
 Improve AboutCode Documents

 		
 Share AboutCode Document Improvements

 		
 Basic Tutorials

 		
 How to Run a Scan

 		
 Setting up a Virtual Environment

 		
 Setting up Scancode Toolkit

 		
 Looking into Files

 		
 Performing Extraction

 		
 Deciding Scan Options

 		
 Running The Scan

 		
 Other Important Documentation

 		
 How to Visualize Scan results

 		
 Setting up Scancode Workbench

 		
 Importing Data into Scancode Workbench

 		
 Visualization

 		
 How To Extract Archives

 		
 Usage:

 		
 All Extractcode Options

 		
 How to specify Scancode Output Format

 		
 JSON

 		
 Print to stdout (Terminal)

 		
 HTML

 		
 Custom Output Format

 		
 How to set what will be detected in Scan

 		
 All “Basic” Scan Options

 		
 Different Scans

 		
 How-To Guides

 		
 How To Add a New License for Detection

 		
 How to add a new license for detection?

 		
 How to Add New License Rules for Enhanced Detection

 		
 How to add a new license detection rule?

 		
 Command Line Interface Reference

 		
 Synopsis

 		
 Quickstart

 		
 Type of Options

 		
 Output Formats

 		
 Other Important Documentation

 		
 Getting Help from the Command Line

 		
 All Documentation/Help Options

 		
 Help text

 		
 Command Examples Text

 		
 Plugins Help Text

 		
 –list-packages Option

 		
 –print-options Option

 		
 All Available Options

 		
 All “Basic” Scan Options

 		
 All Extractcode Options

 		
 All “Core” Scan Options

 		
 All Scan Output Options

 		
 All “Output Control” Scan Options

 		
 All “Pre-Scan” Options

 		
 All “Post-Scan” Options

 		
 How to Run a Scan

 		
 Setting up a Virtual Environment

 		
 Setting up Scancode Toolkit

 		
 Looking into Files

 		
 Performing Extraction

 		
 Deciding Scan Options

 		
 Running The Scan

 		
 Other Important Documentation

 		
 Basic Options

 		
 All “Basic” Scan Options

 		
 –generated Options

 		
 –max-email Options

 		
 –max-url Options

 		
 –license-score Options

 		
 –license-text Options

 		
 –license-url-template Options

 		
 –license-text-diagnostics Options

 		
 Core Options

 		
 All “Core” Scan Options

 		
 Comparing Progress Message Options

 		
 –timeout Option

 		
 –reindex-licenses Option

 		
 –from-json Option

 		
 –max-in-memory Option

 		
 Scancode Output Formats

 		
 All Scan Output Options

 		
 –json FILE

 		
 –json-pp FILE

 		
 –json-lines FILE

 		
 Comparing Different json Output Formats

 		
 –spdx-rdf FILE

 		
 –spdx-tv FILE

 		
 –html FILE

 		
 –html-app FILE

 		
 –csv FILE

 		
 Custom Output Format

 		
 Controlling Scancode Output and Filters

 		
 All “Output Control” Scan Options

 		
 –strip-root Vs. –full-root

 		
 –ignore-author <pattern> Option

 		
 –ignore-copyright-holder <pattern> Option

 		
 –only-findings Plugin

 		
 Pre-Scan Options

 		
 All “Pre-Scan” Options

 		
 –ignore Option

 		
 –include Option

 		
 –classify

 		
 –facet Option

 		
 Glob Pattern Matching

 		
 What is a Facet?

 		
 Post-Scan Options

 		
 All “Post-Scan” Options

 		
 –mark-source Option

 		
 –consolidate Option

 		
 –filter-clues Option

 		
 –is-license-text Option

 		
 –license-clarity-score Option

 		
 –license-policy FILE Option

 		
 –summary Option

 		
 –summary-by-facet Option

 		
 –summary-key-files Option

 		
 –summary-with-details Option

 		
 How it all Works

 		
 Overview

 		
 How does ScanCode work?

_images/json_ugly.png
(venv-scan3.1.1) ayansm@AyanUbuntuDell:~/Desktop/GSoD/scancode-toolkit-versions/scancode-toolkit-3.1.1$./scancode -clpieu --json - samples
setup plugins. ..

collect file inventory...

scan files for: info, licenses, copyrights, packages, emails, urls with 1 process(es).
[HHHHHHARHR AR] 36

{"headers":[{"tool_name" 3.1.1","options”:{"input":["samples"]
son":"-","--license":true, strue,"--url":true},"notice":"Generated with ScanCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\NOR
[CONDITIONS OF ANY KIND, either express or implied. No content created from\nScanCode should be considered or used as legal advice. Consult an Attorney
\nfor any legal advice.\nscancode is a free software code scanning tool fron nexs Inc. and others.\nvisit https://github.con/nex8/scancode-toolkit/ fo
r support and download.","start._f
files_count”:36}}],"files
null,"nd5" :null, "ni null,"file_typ
is_source":false,"is_: false,"license
[1,"files_count”:36,"dirs_count X
‘extension' ,"size":236,"date":"2019-062-12","shal": "2e07e32c52d607204fad196052d70e3d18fb8636"
text/plain”,"file_type ,"progranming_language”:null,"is_binary s_archive:false,"is_media
se,"ts_script":false,"licenses":[],"license_expressions”:[], 3B [1,"authors":[],"packages”:[], "email
/zlib.net/z1ib-1.2.8.tar.gz","start_line":3,"end_line":3},{"url": "http://master.dl. sourceforge.net/project/javagroups/IGroups/2.16.0. GA/JGrnups 2.10.0
-GA.src.zip","start_line nd_line":4}],"files_count":e,"dirs_count ,"scan_errors":[]},{"path": "samples/screenshot.png”, "type":"fi
ase_name":"screensho’ 919-02-12", "sha1":"01ff4blde®bc6c75c9ccabed6c80c1802d69
6ef5390777147423c98b42a6a25e57: NG image data, 28806 x 1666, 8-bit/color RGB, non-interlaced
ull,"is_binary false,"licenses

1,"authors [1,"ematls’
samples /README", " type' ,"base_name
,"md5": "effc6856ef8529250fb1a470792b3F3;

false,"is_media
[1,"emails
rch

ull,"progranming_language” i :false
icense_expressions":[],"copyrights" [1,"authors
scan_errors”:[]},{"path": "samples/arch/zlib.tar.gz","type" libAtarAgZ ,"base_name
2019-82-12","shal":"576foccfe534d7f5ff5d6400078d3c6586de3abd’ "20b2370751abfcO8bb3556c1d8114b5: |
gzip compressed data, last modified: Wed Jul 15 14:38:19 2015, from Unix","programming_language":null, isibinary true,"is
s_media :false,"is_script”:false,"licenses":[],"license_expressions”:[],"copyrights":[],"holders

|_text":false,"is_archive

1,"authors":[], "packages Files_count dirs_count":e,"size_count":0,"scan_errors”:[1},{"path": "samples/arch/zlib.tar.gz-e
Ixtract”, i z1ib. tar.gz-extract o, "date":null,"sha1” :null, "nd5" :null
Inime_type”:null,"file_type": :false is_source”:false

[1,"holders":[],"authors":[], " package:
amples/arch/zlib.tar.gz-extract/zlib-1.2.
nuLl, "nd5" :null, "mime_type” :null,"file._type"

[1,"license_expressions":[],"copyrights"

13, {"patl
,"date":null,"sha1"

is_script”
dirs_count

false, "license:

null, "programming_language” :null, "is_binar

_images/master.png
@ BUILD PASSING

_images/image02.png
pr)

N\

=

o

_images/import-json-file.gif
Welcome to ScanCode Workbench
N

Start: Learn:
% Import ScanCode JSON How to run a scan with ScanCode Toolkit
B8 Open SQLite File About ScanCode Workbench's various views

Save SQLite File How to create Conclusions

Additional Help and Documentation:

nCode Workbench Wiki
nCode Workbench Issue Tracker
® Checking for Errors

_images/output_html1.png
Copyrights and Licenses Information

path start end what value
samples/JGroups/EULA 3 108 | license jboss-eula
samples/JGroups/EULA 104 | 104 |copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/LICENSE 496 | 497 | copyright
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroups/licenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 427 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/licenses/Igpl.txt 496 | 497 | copyright
samples/JGroups/licenses/bouncycastle.txt 5 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license mit
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroups/licenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-1.1.txt 20 23 copyright
samples/JGrouns/licenses/apache-2.0.txt 2 202 | license avache-2.0

_images/output_html2.png
File Information

2017-

H

camplsisrcenshotng [— oo | 2017 | c2075 | o1ttoLieoboeTocScoaselscctonnaesTess | oeesadorTrsarezscssbtzasazsesTa
— e |resoe Ay P rp——
e arector | e None [241280 vore Nore

samplsiio arectory [0 None [28752 Nore Nore

el arectory | aen Nore [28103 [Nore Nore

JE— e | A e Y PR ——————

JE—— e |ucense A T F——————
pem—— Grecon | ieeres None [5460 |vore Nore

= arector [e None [15209 Nore Nore

e —— e | o |20 d093e | taboTazenedibdbSebOLaTAct e 2enOSS T | F4SERRZRRBIGIECS Te2bandeSSTS

camplesiGroupsiersesboumoyasiest |fe | bancyastes o0 2|15 | ToacbOooaToMTo009905060110516760 | fcceBesaSToSSeSeZb 12856155

somplsiGropsiensesapache 1106 |fe | apache 168 o255 2007 | 1o60s195TOTeN2eS40 10066 1593956400080 | ESOBGTISSESHIGHO 125005 TIASOe

complesiGroupsiensesapache 206 |fle | apache 208 o |20 gm0 | eroTsessptedse0zelatecs0e2135040002550 7o SeSacl15cdaToA2204BT
samplsiGroupliensesep 100t e |msom I P S PR ——
‘samples/Groupsisrc/RouterStub java file RouterStub.java Jjava 2017 | 9913 | c1168181BeeTbadccoi4440c04c099729d716052 | eecle23494achedB0BBCO3bCeBITI2.

0922

_images/navigate-code-tree.gif
Column visibility Package info

Sl e ol s

Copyright License
Statements = ShortName

Email . URL

openssl-1.1.0e/.travis-create-
release.sh

https://www.openssl.org/cor

OpenSSL/SSLeay
License

iRk e e Bbtps:dfwtid npenssl orglinsde
https://www.openssl.org/sot
OpenSSL.pdf

Bt denrintiaonorg/ 20441
http://cachebleed.info/
http://www.isg.rhul.ac.uk/tls
http://www.isg.rhul.ac.uk/
http://rt.openssl.org/Ticket/|
http://tools.ietf.org/html/dra
00
http://www.isg.rhul.ac.uk/~k
Bt denrintiaonorg 200005
T, sa o o iisads
OpenSSL/SSLeay Bt denrintiaonrg/ 2007
License http://info.isl.ntt.co.jp/crypt/
___ Cevmetae o e _httn/Ananw 7lih net/DILLFA(

[ERE [

David Woodhouse@intel.com
E e

N e T
Free Proprietary

st e e
Sl Do

axmEaniinfonnati < hiber i s

__¢_________________
R e 5

Previous

_images/output_csv.png
10

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27

Resource, type,name,base name,extension,date,size,shal,md5,files count,mime type,file type,programming language,is binary,is text,is archive,is media,is source,i

s_script,scan errors, license key,license score,license short name,license category,license owner,license homepage url,license text url,license reference
url, license _spdx license key,license spdx url,matched rule identifier,matched rule license choice,matched rule licenses,copyright,copyright holder,author,

enail,url,start _line,end line,package type,package name,package version,package primary language,package summary,package description,package size,package
release date,package homepage url,package notes,package _bug tracking url,package vcs repository,package copyright top level

7samples/screenshot.png, file,screenshot.png, screenshot, .png, 2017-09-22, 622754, 01 f4b1de0bc6C75c9ccabed6c80C1802d6976d4, bbef5a0077714742398b42a6a25e57a, , image/

png,"PNG image data, 2880 x 1666, 8-bit/color RGB, non-interlaced”,,True,False,False, True,False,FalSe, ,,, . 1y ossrssssrsrssnssssnsssis

/samples/README, file,README, README, ,2019-09-18, 238, 598b3cadda718999199d9acbb763467dc31c9a6, f089167711dfa70aa0460726cbd5cda, , text/plain, ASCIT

text, ,False, True, False, False,False,FalSe, ,, . .1 ssisrsssssssssnnsinssiis

/SAMDLES/README, 114111 0ssss0sssssssssssssssssss NEtp://2lib net/21ib-1.2.8.tar.02,3,3,,,,,0 0000000

/SAMDLES/README, , 1,111 11105s1115ssssssssssssssssss,NED://master.dl.sourceforge.net/project/javagroups/JGroups/2.10.0.GA/

JGroups-2.10.0.GA.STC.ZiD,4,4, 11110011114

/samples/JGroups/, directory, JGroups, JGroups, , , 241280, ,,14, , , , False, False, False, False, False,FalSe, ,, ., ,us 1o sssssssssssssnssssnssiis

/samples/zlib/, directory, zLlib, zLib, ,, 268762, ,,16, , , ,False, False, False, False, False,FalSe, ., sss 11 sssrssssssssssssssnssins

/samples/arch/, directory,arch,arch, ,,28103,,,1,,,,False,False,False, False, False, FalSe, ,, ..,y ss 10 sssrssssssssssssiinsss

/samples/JGroups/EULA, file,EULA, EULA, ,2017-09-22, 8156, eb232aab424ecadc4136904e6143b72aaadc 4de, Gbedaceb8296727ef f foacobr8esbdb3, , text/plain, ASCIT

text, Javascript+Lasso, False, True, False, False, TrU€, FalSe, , ., yysrssisrsssssssssnssssnssiis

/5anples/JGroups/EULA, ,,,, 11111111115 ,,,jb0SS-eula,100.00, JBoss EULA,Proprietary Free,JBoss Community,,http://repository.jboss.org/licenses/

jbossorg-eula. txt,https://enterprise.dejacode. con/urn/urn:dje: license: jboss-eula, , , jboss-eula. LICENSE, False, [u' jboss-eula'],,,,,,3,108,,,,,,, .11,

75amples/JGroUpS/EULA, 1,1 1s111sssssssssssssssssssss, "COPYright 2006 Red Hat, Inc.”,,,,,104,104,,,,,,,,,,,,,

/5aMpLes/IGrOUDS/EULA, 14111 ssssssssssssssssssssssss"Red Hat, Inc.”,,,,104,104,,,,,, ..., 05,

/5aMpLes/IGrOUDS/EULA, ,,, 14111 sssssssssssssssssssssssss s NEED://wi. Opensource. org/licenses/index.php, 24,24, , ., ,1410 0001

/5aMDLeS/IGIOUDS/EULA, 1,1, 11111 sssssssssssssnssssnsssssss NEEDS/ /WM. 3DOSS.OTG/,27,27, 10000000100

/5aMples/JGroUpS/EULA, ;1,411 1 ssssssssssssssssssssssss s NEED://wi. redhat . com/about/corporate/trademark, 40,46, ,,,,, .., 1,

/5aMpLes/IGrOUDS/EULA, ;141111 ssssssssssssssssssssssss s NEEDZ//Wi. JbOSS. Com/COMPaNy/10g0S, 43,43, , 1, 11111 s01s

/5aMpLes/JGrOUDS/EULA, , 1, 11111 sssssssssssssssssssssssss s NEED://ui. Tedhat . com/licenses, 94,94, ,,,,,,,,,1,,

/samples/JGroups/LICENSE, file, LICENSE, LICENSE, ,2017-09-22, 26430, e60c2e780886f95dfacoee36992b8edabeco@bcc, 7fbc338309ac3sfef cd64boabbese3d, , text/plain, ASCIT

text, ,False, True, False, False,False,FalSe, ,, ;1 11 sssrsssssssssnisssnsiis

/samples/JGroups/LICENSE, , ,,,1,y11117111,,,,10p1-2.1-plus,100.00, LGPL 2.1 or later,Copyleft Limited,Free Software Foundation (FSF),http://wad.gnu.org/licenses/

old-licenses/1gpl-2.1-standalone.htnl, http://wni.gnu.org/licenses/old-licenses/lgpl-2. 1-standalone. htm, https: //enterprise.dejacode. con/urn/

urn:dje:license:lgpl-2.1-plus, LGPL-2. 1+, https://spdx.org/Licenses/LGPL-2.1, 1gpl-2.1-plus_2.RULE, False, [u'1gpl-2.1-plus'1,,,,,, 1,502, ,,, 1, 000005s

/5amples/JGroups/LICENSE, , 11y s111151s0ssssssss000s0s0,"CODYTight (c) 1991, 1999 Free Software Foundation, Inc

/5anples/JGroups/LICENSE, , 11, 1s11ssssssssssssssssssss, "Free Software Foundation, Inc.”,,,,4,7,,::s00r0s00s

/5amples/IGroups/LICENSE, , .4, sssssssssssssssssssssssss COPYyrighted by the Free Software Foundation,,,,,427,433,,,....0.000s
/5amples/IGroups/LICENSE, , ., sssssssssssssssnssssssssss the Free Software Foundation,,,,427,433,,,,,,..0.01,
/5amples/IGroups/LICENSE, , ., 4y sssssssssssssssssssssssssss,Janes Random Hacker.,,,496,497,, ..., ,....s
/samples/JGroups/licenses/,directory, licenses, licenses, ,,54604, ,,5, ,, ,False,False, False, False,False,FalSe, , ..\ usssrsssssssssssisssrssiins
/samples/JGroups/src/,directory,src,src, ,, 152099, ,,7, ,, ,False, False, False, False, FalSe, FALSE, , .\ ossissssssssssssssrssssiins

/samples/JGroups/licenses/lgpl. txt, file,lgpl.txt, lgpl, . txt,2017-09-22,26934,8f1a637d2e2ed1bdbIebdla7dccbSc12cc557el, F14599a2 08976 FBca7e2baade3ds7s, , text/
plain, "ASCIT text, with CRLF line terminators",,False,True,False,False,False,FalSe, , ., . ,\rsrirsssirs

_images/output_html3.png
samplesiarciatb ar gz

plain aibal

tnslentrpise dejacode confurur di cense apache:

[p— [ES PR—— [E——
R p— S O e e ——
boost10 [Boost10 permissve | Boost tp=dlenterrise dejacode comlunundielicense boost: |y boost orgluserslicense il
coby25 | coBY-2S permissve | Creative Commons p=dlenterprise dejacode comluniundiglicense S B |y cresivecommons orglicensesiy2 5
R r—
RS P [E— = [
w0 |erio comet o [S (S ———————
PN e e fe— [T,
plus-ada | exception Limited v plus-ada
380ss EULA 3Boss Comm s Jlenterprise dejacode comfumumdig-icense:jboss:

[o— gy iy =
W2t |iomziomer | GOt | s o roundason | beiss deacods conlurtun i icense oo . | s afensegod emestont2
=) £ frertn)
R vemesne | wr [rE————————— [—————
bt — e | o [———————— . —

[— s [———
o [mmicme vemssne | [EeT——————

‘Generated ith ScanCode and provide on a °AS 15" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, eher express or mpid. o conentcreatedfom ScanCode shoud be conside
‘scanning tool from nex inc. and ofhers. Visit hitp-/iuww nexb.com and hitps:/igithub. cominexBi/scancode-toolit for support and download.

_images/output_html_app1.png
License Summary | Copyright Summary Ciues File Detals Packages

Total Fles Scanned: 43

_images/output_html_app2.png
sampes

License Summary | Copyright Summary | Ciues File Detais Packages

Total Fles Scanned: 43

_images/output_jsonlines.png
7
£

samples/arch
‘samples/JGroups/EUL
samples/JGroups/LICENSE
samples/Jroups/License:
samples/JGroups/src”,
‘samples/Jroups/icenses/lgpL. txt:
‘samples/Jroups/Licenses/bouncycastle. txt
‘samples/Jroups/Licenses/apache-1.1.txt"
‘samples/JGroups/Licenses/apache-2.0. txt"
‘samples/Jroups/Licenses/cpl-1.0. txt", "scan_errors”:[1
‘samples/Jroups/src/Routerstub. java" , "scan_errors®: [1,
sanples/Joroups/src/FixedvenbershipToken. java® “sca
samples/JGroups/src/RATE_LIMITER
sanples/J6roups/src/S3_PING. java
samples/Jroups/src/Guardedsy . javar
samples/Jroups/src/ImutableReference. javar
samples/JGroups/src/RouterStubMianager
samples/zLib/zutil |
samples/zLib/deflat
samples/zLib/zlib.h'
samples/zLib/zutil.
samples/zLib/deflate.|
samples/zlib/adler32..
‘samples/zlib/iostrean
samples/zlib/dotzlib
samples/zLib/gc:

11, "packages”: 11}
kages: (131}

"scan errors
"scanerrors

packages”: 11}
3

rights": 1, "packages": (1
1

i i i i i i i i i i i i i i i i i i T

_images/output_jsonpp.png
anples/JGroups/licenses/apache-1.1. txt",
file",
‘apache-1.1.txt

937,

18609195787 fchf2e5401b966150395640606011
'8C909d7735128f4fdb0128ee57 Tha3oe"
nutl,

ext/plain’,

\SCIT text, with CRLF line terminators"

Foundation.

_images/output_html_app3.png
Lcense Summary Copyght Summary Clues | FleDetals | packages.
‘Show 50¥] enties sewem [
xtens Fie
pan 4 e o wame bt owe sz swar wos. ame type
samplesiarch drecioy arcn 20108 B
1708 STeocciesoATISHSdSd0007 | 2062707 aboSbRASSEEL
sampesiachibag: e e 3 20108 s applcatonix.
samplesticroups dreciory JGrous. 20120 2
708 [—————
sampesiicroupsiELA e s = e s fero s
ar0n TSNS ————
samplesiiGroupsiLICENSE ucense 20030
e 2 Sazbesdabecoonec bsozent =
samplestiGroupsficenses diectory iconses stc0s s
samplesticroupsficnsesiap - - 005 L issdsissTarichizesiolbes scoondrssizsaidborasees
e 1o e = 1 ssaasseaosonds osaoe =
samplesticroupsficensesiap o - 201705 e o S ——
chez0 e apche 2 2 B0 pearashasecnsees zzcar pan
samplesticroupsficensesiio - - 705 7alachowsarsasToiocdans ofdadesesasTosssiszbi2
ncycase e 2 2 Preswevy persy =
samplesiicroupsficensesicy - - 201705 P R —
Fiom 2 BB oecradzzacnicese sosrsodsa s
‘ 3
Shouing 11010 0f 43 enties. o [1]2 3 4 5 me

_images/output_json.png
sampledeflicjson %

:"Generated with ScanCode and provided on an \"AS IS\" BASIS, WIT

ancode_notice

_images/output_spdx_tv_package.png
Package

Packageliane: samples
PackageDownloadLocation: NOASSERTION

PackageVerificationCode: ba63ad293ba27f95c8aa32ab097dc99895F35078
PackageLicenseDeclared: NOASSERTION

PackageL i censeConcluded: NOASSERTION

PackageL i censeInfoFronFiles: Apache-1.1
PackageLicenseInfoFronFiles: Apache-2.6

PackageLicenseInfoFronFiles: BSL-1.0
PackageLicenseInfoFronFiles: CC-BY-2.5
PackageLicenseInfoFronFiles: CPL-1.0

PackageLicenseInfoFronFiles: LGPL-2.1+

PackageL i censeInfoFronFiles: MIT
PackageLicenseInfoFronFiles: Zlib

PackageLicenseInfoFronFiles: LicenseRef-cnr-no
PackageLicenseInfoFronFiles: LicenseRef-gpl-2.6-plus-ada
PackageLicenseInfoFronFiles: LicenseRef-jboss-eula
PackageLicenseInfoFronFiles: LicenseRef-public-domain
PackageCopyrightText: <text>(c) 2004 by Henrik Ravn

(c) Copyright Henrik Ravn 2004

Copyright (c) 1991, 1999 Free Software Foundation, Inc.

Copyright (c) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly.

Copyright (c) 1995-2008 Mark Adler

Copyright (c) 1995-2016 Jean-loup Gailly, Brian Raiter and Gilles Vollant.
Copyright (c) 1995-2611 Mark Adler

Copyright (c) 1995-2012 Jean-loup Gailly

_images/planned.png

_images/output_spdx_tv_file.png
File

FileName: ./sanples/JGroups/EULA

FileChecksum: SHAL: eb2323a0424ecadc4136904e6143b72aaa0c fdde
LicenseConcluded: NOASSERTION

LicenselnfoInFile: LicenseRef-jboss-eula

FileCopyrightText: <text>Copyright 2086 Red Hat, Inc.
</text>

File

FileName: ./sanples/JGroups/LICENSE

FileChecksum: SHAL: e60c2e780886795dfac0ee36992b8edabecoBbce

LicenseConcluded: NOASSERTION

LicenselnfoInFile: LGPL-2.1+

FileCopyrightText: <text>Copyright (c) 1991, 1999 Free Software Foundation, Inc.

copyrighted by the Free Software Foundation
</text>

_images/output_spdx_tv_licenses.png
Extracted Licenses

LicenseID: LicenseRef-cnr-no

LicenseComnent: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/cnr-no. yml
</text>

ExtractedText: <text>See details at https://github.con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/cnr-no. yml
</text>

LicenselD: LicenseRef-gpl-2.0-plus-ada

LicenseComnent: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/Licenses/gpl-2.0-plus-ada. yml
</text>

ExtractedText: <text>See details at https://github. con/nexB/scancode-toolkit/blob/develop/src/licensedcode/data/ Licenses/gpl-2.0-plus-ada. ynl
</text>

_images/scancode-toolkit-extract.png
Name A Date Modified Size Kind

zlib.tar.gz Feb 8, 2016, 4:04 PM 28 KB gzip compressed archive
» [zlib.tar.gz-extract Today, 4:18 PM -- Folder

_images/scancode-toolkit-static-html1.png
location start end what value
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 1 3 copyright | Copyright (c) 1995-2011 Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/adler32.c | 3 3 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 4 4 copyright | Copyright (c) 1995-2013 Jean-loup Gailly and Mark Adler
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zlib.h 6 20 license | zlib
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 1 3 copyright | Copyright (c) 1995-2013 Jean-loup Gailly.
samples/arch/zlib.tar.gz-extract/zlib-1.2.8/zutil.h 3 3 license | zlib
samples/JGroups/EULA 3 108 | license jboss-eula
samples/JGroups/EULA 104 | 104 | copyright | Copyright 2006 Red Hat, Inc.
samples/JGroups/LICENSE 1 502 | license lgpl-2.1-plus
samples/JGroups/LICENSE 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/LICENSE 426 |433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/licenses/apache-1.1.txt 2 56 license apache-1.1
samples/JGroups/licenses/apache-1.1.txt 4 5 copyright | Copyright (c) 2000 The Apache Software Foundation.
samples/JGroups/licenses/apache-2.0.txt 2 202 | license apache-2.0
samples/JGroups/licenses/bouncycastle.txt 5 5 copyright | Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle
samples/JGroups/licenses/bouncycastle.txt 7 18 license | mit
samples/JGroups/licenses/cpl-1.0.txt 1 1 license | cpl-1.0
samples/JGroups/licenses/Igpl.txt 1 502 | license lgpl-2.1-plus
samples/JGroups/licenses/Igpl.txt 4 7 copyright | Copyright (c) 1991, 1999 Free Software Foundation, Inc.
samples/JGroups/licenses/Igpl.txt 426 | 433 | copyright | copyrighted by the Free Software Foundation
samples/JGroups/src/FixedMembershipToken.java | 2 5 copyright | Copyright 2005, JBoss Inc.

_images/policy-view.png
ScanCode Workbench - policy-samples.salite

4 7= samples Columnvisibility = Showall | Hideall | Fileinfo = Origininfo = Copyrightinfo | License info Search:
O ereh Package info
4 7= JGroups
4 = licenses License
@ apache-1.1txt License License License License Short License License
© apache-201xt Path Policy Expressions Key || Score Name Category || Owner
B bouncycastle.xt samples/JGroups/licenses
A cpl-10.txt
& lgplixt samples/JGroups/licenses/apache-1.1txt Prohibited apache-1.1 apache-1.1 100 Apache 1.1 Permissive Apache
License AND public- public- 100 Public Public Software
Dae domain domain Domain Domain Foundation
[E RV Unspecified
w# LICENSE
o samples/JGroups/licenses/apache-20.xt Approved apache-20 apache-20 100 Apache20 Permissive Apache
License Software
[README Foundation
[@ screenshot.png
samples/JGroups/licenses/bouncycastle.txt mit mit 988 MIT Permissive MIT
License
samples/JGroups/licenses/cpl-1.0.txt Restricted pl-1.0 pl-10 9994 CPL1O Copyleft 1BM
License Limited
samples/JGroups/licenses/lgpl.txt Recommended Igpl-2.1-plus lgpl-21- 100 LGPL21 Copyleft Free
License plus orlater Limited Software
Foundation
(FSF)
Activate Filters | Clear Filters 2 2 2 2 2 2 2

_images/scancode-workbench-chart-summary.gif
AboutCode Manager

openssl-1.1.0e / License Short Name

- Total Files Scanned: 2517

B Configurations

@ crypto

B demos OpenSSL License {1820}
B doc N No Value Detected (676)
@ engines BSD-Modified
B GPL2.O
B fuzz Apache 2.0
B include OpenSSL/SSLeay License
B ms BSD-Simplified
s Public Domain
i ssl GPL 1.0 or later
BB test Public Domain Disclaimer
s LGPL21
BB util GPL2.0or later
s MIT License
[.travis-create-release.sh MPL 1.1
B .travisyml Artistic-Perl-1.0
[B ACKNOWLEDGEMENTS Generic, Bare Warranty Disclaimer
B appveyoryml Proprietary
2 AUTHORS snprintf License
3 build.info Sun RPC License
[CHANGES

@ config

@ config.com

@ Configure

[2) CONTRIBUTING

.

B FAQ

3 INSTALL

3 LICENSE

3 Makefile.shared

B NEWS

A NOTES.DJGPP

_images/scancode-workbench-chart-summary1.gif
AboutCode Manager

openssl-1.1.0e / License Short Name

- Total Files Scanned: 2517

B Configurations

@ crypto

B demos OpenSSL License {1820}
B doc N No Value Detected (676)
@ engines BSD-Modified
B GPL2.O
B fuzz Apache 2.0
B include OpenSSL/SSLeay License
B ms BSD-Simplified
s Public Domain
i ssl GPL 1.0 or later
BB test Public Domain Disclaimer
s LGPL21
BB util GPL2.0or later
s MIT License
[.travis-create-release.sh MPL 1.1
B .travisyml Artistic-Perl-1.0
[B ACKNOWLEDGEMENTS Generic, Bare Warranty Disclaimer
B appveyoryml Proprietary
2 AUTHORS snprintf License
3 build.info Sun RPC License
[CHANGES

@ config

@ config.com

@ Configure

[2) CONTRIBUTING

.

B FAQ

3 INSTALL

3 LICENSE

3 Makefile.shared

B NEWS

A NOTES.DJGPP

_images/scancode-toolkit-static-html2.png
Package Information

type packaging primary_language
samples/arch/zlib.tar.gz | plain tarball | archive None
Licenses
key short_name category owner dejacode_url homepage_url
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
14 Apache 1.1 | Attribution | Software 14/ * . . http://www.apache.org/licenses/
. Foundation | ——
apache- Apache https://enterprise.dejacode.com/license_library/Demo/apache-
20 Apache 2.0 | Attribution | Software 2.0/ * . . http://www.apache.org/licenses/
. Foundation | ==
11)000 Sh Boost 1.0 Attribution | Boost :ﬂ'kop/s://enterprlse.de]acode.com/llcense library/Demo/boost: http://www.boost.org/users/license.html
cc-by- CC-BY-2.5 | Attribution Creative https://enterprise.dejacode.com/license library/Demo/cc-by- http://creativecommons.ora/licenses/by/2.5/
25 Commons | 2.5/
CMR -
CMR Christian
CMr-No | erce Attribution | Michelsen | https:/enterprise.dejacode.com/license_library/Demo/cmr-no/
Research
AS
cpl-1.0 [CPL1.0 Em{;ﬂ 1BM https://enterprise.dejacode.com/license_library/Demo/cpl-1.0/ | http://www.eclipse.org/legal/cpl-v10.html
1-2.0- GPL 2.0 or
gﬁjs_' later with Copyleft Dmitriy https://enterprise.dejacode.com/license _library/Demo/gpl-2.0-
z A Ada Limited Anisimkov | plus-ada/
exception
jooss- | JBoss Proprietary | JBoss https://enterprise.dejacode.com/license_library/Demo/jboss-
eula EULA Free Community | eula/
Free
Igpl-2.1- | LGPL 2.1 Copyleft Software https://enterprise.dejacode.com/license library/Demo/lgpl-2.1- | http:/www.gnu.org/licenses/old-
plus or later Limited Foundation | plus/ licenses/Igpl-2.1-standalone.html
(FSF)

_images/scancode-workbench-chart-summary-filter.gif
openssl-1.1.0e
iz} aps

B Configurations
@ crypto

B8 demos

B doc

B engines
B8 external
B fuzz

8 include
B ms

B os-dep

i ssl

BB test

8 tools

B8 util

B VMS

g

g

travisyml

g

g

appveyoryml
AUTHORS
e e
CHANGES

config

g

g

g

g

g

config.com

g

Configure

g

g

e_os.h

FAQ

INSTALL
LICENSE
L
NEWS

g

g

g

g

g

Public Domain Disclaimer

.travis-create-release.sh

ACKNOWLEDGEMENTS

CONTRIBUTING

License Short Name

Total Files Scanned: 2517

OpenSSL License

No Value Detected
Apache 2.0

OpenSSL/SSLeay License

BSD-Modified

Public Domain
BSD-Simplified
GPL20

GPL

GPL2.0or later
LGPL2.1

MIT License
MPL1.1

Altera License -
Artistic-Perl-1.0 4
Free Proprietary
FreeBSD Boot -
LGPL 2.1 or later
snprintf License

Sun RPC License

_images/views_sample.gif
Dashboard
43 12 17 1

Files Scanned Unique Licenses Detected Uniaue Copyrights Detected sckages Detected

Liense Categori Liense Keys Package Type

_images/scandatatable-01.png
@ AboutCode Manager - busybox-1.29.2-scan_20180831_abcm wiki_worksglite

File Edit View Window Help

4 B busybox-129.2
™ applets
B applets_sh
® arch
™ archival
8 configs
™ console-tools
8 coreutils
B debianutils
 docs
W e2fsprogs
™ cditors
B examples
™ findutils
™ include
™ init
™ Kibcutils
™ libbb
™ libpwdgrp
™ loginutils
B mailutils
® miscutils
B modutils
™ networking
™ printutils
™ procps
B gemu_multiarch_testing
™ runit
8 scripts
™ selinux
™ shell
= cvsklned

Columnvisibility | Showall = Hide all

Path
busybox-1.29.2/applets
busybox-1.29.2/applets/applet_tables.c
busybox-1.29.2/applets/applets.c
busybox-1.29.2/applets/busybox.mkll
busybox-
1.29.2/applets/busybox.mksuid

busybox-1.29.2/applets/individual.c
busybox-1.29.2/applets/install.sh
busybox-1.29.2/applets/Kbuild.src
busybox-1.29.2/applets/usage.c

busybox-
1.29.2/applets/usage_compressed

ActivateFilters | Clear Filters

Show| 10 v entries

Origininfo | Copyrightinfo | License info

Copyright Statements

Copyright (c) 2007 Denys Vlasenko

Copyright (c) 2007 Denys Vlasenko

Copyright 2005 Rob Landley
rob@landley.net

Copyright (c) 1999-2005 by Erik
Andersen

Copyright (c) 2008 Denys Vlasenko.

Showing 1to 10 of 11 entries (filtered from 2,668 total entries)

Package info

License Short

Name

GPL2.0

GPL2.0

GPL2.0

GPL2.0

GPL2.0

File Name
applets
applet_tables.c
applets.c

busybox.mkil

busybox.mksuid

individual.c

install.sh

Kbuild.src

usage.c

usage_compressed

File
Size

6278

350

582

1358

248

3282

1936

1170

1660

Search

File Type

Csource, ASCII text
Csource, ASCII text

POSIX shell script, ASCII text
executable

POSIX shell script, ASCII text
executable

Csource, ASCII text
POSIX shell script, ASCII text
executable

ASCII text
Csource, ASCII text

POSIX shell script, ASCII text
executable

_images/table-view.gif
@00 AboutCode Manager

& @ & openssl-1.1.0e Columnyvisibility =~ Showall = Hideall Origininfo = Copyrightinfo = Licenseinfo = Package info Search:
'
.
@ Configurations
ul oo) . .
4 Path l& Copyright Holders License Short Name URL
.
ez:] | openssl-1.1.0e/fuzz
@ engines
p openssl- http://llvm.org/docs/Li
ittt 1.1.0e/fuzz/README.md https://chromium.goog
= - B fuzz https://github.com/lIvt
@ include http://llvm.org/svn/llvi
? =]
® os-dep openssl- OpenSSL Project Apache 2.0 https://www.openssl.c
1.1.0e/fuzz/asnl.c
-
B test openssl- OpenSSL Project Apache 2.0 https://www.openssl.c
8 tools 1.1.0e/fuzz/asn1parse.c
| o .
openssl- OpenSSL Project Apache 2.0 https://www.openssl.c
& VMS 1.1.0e/fuzz/bignum.c
3 .travis-create-release.sh
B travisyml openssl- . OpenSSL Project Apache 2.0 https://www.openssl.c
® ACKNOWLEDGEMENTS 1.1.0e/fuzz/bndiv.c
[appveyoryml openssl-
3 AUTHORS dd0esuldme
=1 Buldinte | OpenSsl Project Apaciz 2.0 https:// |
apenss- @i Tolen e 2, s fvemve openssle
[CHANGES y P ! P P P
1.1.0e/fuzz/cms.c
@ config
@ config.com openssl- Opendcl Project e U httpsfwvanopenssle
[@ Configure
v : E
[2) CONTRIBUTING Has a Value
- Akamai Technologies. A
D FAQ Andy Polyakov Previous 2 Next

Bob Beck,Theo de Raadt,Markus Friedl
Liw Yourng

Free Software Foundation

Free Software Foundation, Inc.

_static/file.png

_images/workbench_dashboard.png
AboutCode Manager - sample.sqlite

Dashboard

B

L] 43 12 17 1

- Files Scanned Unique Licenses Detected Unique Copyrights Detected Packages Detected
Programming Languages License Categories License Keys Package Types

1

1

09

08

07

06

0s

04

02

02
W other M ccby-25 M cpl-10 o1
1 Proprietary Free M Public Domain W public-domain M boost-10
W other M C++ M GAs M Ada M C# B Copyleft Limited B 1gpl-2.1-plus

Hava WC B permissive o ziib 1 plain tarball

o

_static/minus.png

_static/plus.png

_images/clock.png

_images/aboutcode-toolkit.png
“build passing

_images/aboutcode-toolkit1.png
“build passing

_images/components_sample.gif

